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Areas of Parametrized Surfaces & Wormholes

Objectives
• Review of Area
• Definition of Surface Area
• Computations and Examples
• Surfaces of Revolution
• Wormholes
• Addendum: Why is surface area a definition and not a theorem?

• Review of Area
• You might find it surprising that the concept of “area” has puzzled mathematicians since antiquity. Besides a rectangles and
triangles and other highly symmetric shapes, it wasn’t until the calculus was invented that the concept of area was generalized to
more complicated regions.

• Planar Sets using Calculus

Given a subset A ⊂ R2 in the plane bounded by the curves y = f(x), y = g(x), x = a, and x = b, with g(x) < f(x) and a < b, we
can use the integral from Calc I:

area(A) =

∫
I

(f(x)− g(x)) dx

Remark The study of area in the plane is far from trivial! This problem was one of the major reasons calculus was invented.
The story doesn’t end there. Future intense study lead Lebesgue to generalize the theory of integration to include crazier sets
that the Riemann integral couldn’t handle. In fact, area(A) =

∫∫
A
dx dy suggests the connection runs deep and in analysis we

can use measure theory to find the area of fractal like objects using area(A) =
∫
A
dµ where µ is the Lebesgue measure in R2.

• Graph of a two-variable function in Space using Calculus

• Given a real-valued function of two variables, f(x, y), we can study the graph z = f(x, y) over a planar region D ⊂ R2. The set
S = {(x, y, f(x, y)) | (x, y) ∈ D} is a surface in R3 and we can define the area:

area(S) =

∫∫
D

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂y

)2

dx dy
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• Let’s review why this is a reasonable definition for the surface area of S.

• Re-interpretation

When we view S using a patch: ~x : U ⊂ R2 → R3,

~x(u, v) =

x1(u, v)
x2(u, v)
x3(u, v)

 ,

or we can write this as a function F : R2 → R3 with F (u, v) = 〈f1(u, v), f2(u, v), f3(u, v)〉.

• Tangent vectors:

~xu =

∂x1

∂u
∂x2

∂u
∂x3

∂u

 and ~xv =

∂x1

∂v
∂x2

∂v
∂x3

∂v


• As we saw above, a little piece of area is approximated by ‖~xu × ~xv‖ du dv.

• Let’s study ‖~xu × ~xv‖ in a new way:

‖~xu × ~xv‖2 =

• So what? Why did we do this?

• So, we just proved an interesting connection:
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Defn 1 First Fundamental Form
Let M ⊂ R3 be a smooth surface. Let ~x : U ⊂ R2 → M be a regular patch. We define the first fundamental form of M ,
denoted by (gij), to be the tensor

[ gij ] =

[
g11 g12
g21 g22

]
where gij = ~xi • ~xj (1)

and the dot product is on R3.

Remarks So if ~x is regular (i.e. ~xu and ~xv are linearly independent at each point (u, v) ∈ U , then one can argue that det(gij) is
not zero. And conversely!
This is another way to check regularity instead of checking that D~x has rank 2.

Why does the determinant show up?

• In linear algebra, the determinant is exactly the change in area of a parallelogram under the effect of a linear transformation.

• This will help us understand how to generalize the area formula to volumes and hyper-volumes in higher dimensions.

• Definition of Surface Area
•We are now ready to define the surface area of a smooth manifold M ⊂ R3.

• Step 1
We start with the case where M can be described using a single patch: ~x : U ⊂ R2 → R3, and M = ~x(U).

We’ve now seen that the local approximation to surface area, ∆S, is ‖~xu × ~xv‖∆u∆v at a point (u0, v0) ∈ U , i.e. briefly
∆S ≈ ‖~xu × ~xv‖∆u∆v

We need to make extra requirements:
• ~x is C1

• ~x is one-to-one on U
• {~xu, ~xv} are linearly independent, or alternatively, D~x has rank 2

Let’s also assume that U = [a, b]× [c, d], that is, is a rectangle.
In this case, we cut-up U into sub-rectangles then add up each ∆S. This should reasonably approximate the area of the surface
~x(U) in R3.
We now define the surface area of M over a single patch, denoted by area(M), to be

area(M) =

∫∫
U

√
det(gij) du dv
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• Step 2
For more general surfaces M , we can cover M with finitely patches of the type in Step 1.

We need to be careful that they only overlap in “one-dimensional sets” (like at points or boundary curves). Then add up the results
using the definition of area in Step 1.

• This suggest the following definiton:

Defn 2 Surface Area
Let M ⊂ R3 be a smooth surface. Let ~x : U ⊂ R2 → M be a regular patch. We define the surface area of M , denoted by
area(M), to be the number

area(M) =

∫∫
U

√
det(gij) du dv (2)

Remarks A few thoughts:
1. Since ~x is C1, the gij are continuous =⇒ det(gij) is continuous (another fun fact from linear algebra is that the determinant is

continuous function) =⇒
√

det(gij) is continuous =⇒ the integral exits.

2. A key property that we need to check is that the formula for the area doesn’t depend on the parametrization chosen.

That is, if we have a different regular patch ~y : V ⊂ R2 → R3 with ~y(V ) = M = ~x(U). Then both integrals agree. This is
Lemma 5.8.3 in Bloch’s book, which I encourage you to read.

The reason the surface area is independent of parametrization is essentially due to the “change of variables” formula.
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• Examples

Act 1 Sphere Let a > 0 and M ⊂ R3 be the sphere of radius a. Parametrize the sphere using the following patch:

~x(u, v) =

(a cos v) cosu
(a cos v) sinu

a sin v

 with U = (−π, π)×
(
−π

2
,
π

2

)
Compute the surface area of the sphere of radius a.

Solution

• D~x =

I’ll leave it as an exercise to verify that D~x 6= 0 and has rank 2.

• [ gij ] =

[
g11 g12
g21 g22

]
=

• g11 =

• g22 =

• g12 =

=⇒
√

det(gij) =

• So

area(M) =
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Act 2 Torus Let R > r > 0 be constants. Parametrize the torus using the following patch:

~x(u, v) =

(R+ r cosu) cos v
(R+ r cosu) sin v

r sinu

 with U = (0, 2π)× (0, 2π)

Compute the surface area of the torus.

Solution

Sketch of M :

• D~x =

I’ll leave it as an exercise to verify that D~x 6= 0 and has rank 2.

• [ gij ] =

[
g11 g12
g21 g22

]
=

• g11 =

• g22 =

• g12 =

=⇒
√

det(gij) =

• So

area(M) =
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Bonus: Theorem of Pappus

Bonus: Curious Fact

• Surfaces of Revolution
We start with a curve in the plane in parametric form:{

x = c1(t)

y = c2(t)
or

{
x = t

y = f(t)
for t ∈ I

Requirements: Assume ci(t), f(t) are C1 and also c2(t) > 0, f(t) > 0 for t ∈ I.

Derivation of ~x for a SOR

7



Defn 3 Surface of Revolution
We can describe the surface of revolution, M = ~x(U), using a single patch:

~x(t, θ) =

 c1(t)
c2(t) cos(θ)
c2(t) sin(θ)

 or with U =

Exercise Describe a sphere of radius a > 0 and a torus of outer radius R and inner radius r (R > r > 0) as surfaces of
revolution.

Patch computations

• ~x(t, θ) = • D~x =

Exercise Explain why this proves D~x 6= 0 and that rank(D~x) = 2 for all points (t, θ) ∈ I.

• [ gij ] =

[
g11 g12
g21 g22

]
=

• g11 =

• g22 =

• g12 =

=⇒
√

det(gij) =

• So

area(M) =

Exercise Do the patch computations for a SOR M parametrized with ~x(t, θ) = 〈c1(t), c2(t) cos(θ), c2(t) sin(θ)〉 and verify that

area(M) = 2π

∫
I

c2(t)
√
c1(t)2 + c2(t)2 dt.
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•Wormholes
A wormhole to geometers is essentially a piece of a torus that cut and attached back to a surface. These are also called tunnels.

We’ll look at a few examples using SageMath: https://jorgemathbasilio.github.io/inspiring_talks/surface_area.html

Act 3 Wormhole 2 Consider the curve C in R2 parametrized by{
x = t

y = cosh(t)
for t ∈ I = (−1, 1)

Let M = ~x(U) be the surface of revolution determined by C.
Compute the surface area of M .

Act 4 Wormhole 1 Consider the curve C in R2 parametrized by{
x = t

y = (1/2)t2 + 1
for t ∈ I = (−2, 2)

Let M = ~x(U) be the surface of revolution determined by C.
Compute the surface area of M .
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Act 5 Wormhole 3 Consider the curve C in R2 parametrized by{
x = t

y = 2 + cos(t)
for t ∈ I = (0, 2π)

Let M = ~x(U) be the surface of revolution determined by C.
Compute the surface area of M .

• Arclength
• Length of Curves in M

Given a parametrized curve, γ : I → R3, we can find the length of γ in exactly the same way that you did in calculus:

lengthI(γ) = lim
n→∞

(
n∑

i=1

‖γ(ti)− γ(ti−1)‖

)
Using the mean-value theorem, we can then prove the following

Theorem 1 Arclength

The length of a curve can be computed by a familiar integral:

lengthI(γ) =

∫
I

‖γ′(t)‖ dt.

Thus, the infinitesimal length is ds = ‖γ′(t)‖ dt. And recall that for the graph of a function y = f(x) in the plane, one can check that
‖γ′(t)‖ =

√
1 + (f ′(t))2.

For surfaces of revolution:
dA = (2πf(t)) ds

which feels right.

Notice we don’t need to really mention that γ ⊂M if we don’t want to. You can and Bloch’s book mentions how.

• Some extra remarks

Remarks We close with a few remarks:
• Why can’t we do something similar to length with surface area? See “Differential Geometry” by Kreyszig for an example where

it can go wrong (§37, pgs. 115–117).
• A neat alternative to the formula for dA we developed is

‖~xu × ~xv‖dudv = sec(θ)dudv

where θ is the angle between the normal vector to the surface M in R3 and the z-axis.
• How to define higher-dimensional versions? To start, one should decide what the k-volume should be in Rn (here k ≤ n).

Then study how “k-cubes” change under linear transformations so that you can then use derivatives and calculus to set-up
the correct integrals.
A good place to start is by showing: vol(Q) = |det(T )| vol(Q) where T : R3 → R3 is a linear transformation and vol(Q) =
(b− a)(d− c)(f − e) is the volume of a cube in R3.
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