MATH 10 - Linear Algebra	a	Fall 2019
Inner Product Spaces		In-class Assignment #10
${7.1-7.3}$		Dr. Jorge Basilio
12_4_2019	CITY COLLEGE	gbasilio@pasadena.edu

Activity 1: Definitions

Write the precise definitions of the following terms: Let V be an abstract vector space.

- (a) an inner product $\langle \cdot | \cdot \rangle$ on V. State the 4 properties required carefully.
- (b) an inner product spcae $(V, \oplus, \odot, \langle \cdot | \cdot \rangle)$.
- (c) the **norm** of a vector \vec{v} in an inner product space V.
- (d) the **distance** between two vectors \vec{v} and \vec{w} in an inner product space V.
- (e) When \vec{v} and \vec{w} are orthogonal vectors, when a set $S = {\vec{v}_1, \ldots, \vec{v}_k} \subset V$ is an orthogonal set, and when S is an orthogonal basis for V.
- (f) when S is an **orthonormal set** and when S is an **orthonormal basis**.
- (g) the **orthogonal complement** W^{\perp} of a subspace $W \subset V$.

Activity 2: Computation

Let

 $S = \{ \langle 1, 0, -2, 1 \rangle, \quad \langle -1, 1, 1, -1 \rangle, \quad \langle 0, 1, -1, 1 \rangle, \quad \langle 1, 0, 1, -1 \rangle \}$

- (a) Apply the **Gram-Schmidt Algorithm** to S.
- (b) Let $\vec{v} = \langle -5, 2, -4, 8 \rangle$. Find the coordinates $\langle \vec{v} \rangle_B$ where B is the output of (a).

For the rest of this activity, let $W = \text{Span}(\{\langle 1, 0, -2, 1 \rangle, \langle -1, 1, 1, -1 \rangle\})$

- (c) Find an **orthonormal basis** for W, and one for W^{\perp} . Hint: you don't need to do any new computations!
- (d) Use (b) to find the **orthogonal decomposition** $\vec{v} = \vec{a} + \vec{b}$ where $\vec{a} \in W$ and $\vec{b} \in W^{\perp}$.
- (e) Find the **projection matrix** $[\operatorname{proj}_W]$.
- (f) Check that (e) is correct by multiplying it to \vec{v} from part (b). You should get the \vec{a} from part (d).
- (g) Find **projection matrix** $[\operatorname{proj}_W]_B$ where B is the output of part (a). Hint: this should be surprisingly simple!

Notice that your answer in part (g) should be a **diagonal** matrix. Thus, by our knowledge of eigentheory, we know that we can diagonalize $[\operatorname{proj}_W]$ into $[\operatorname{proj}_W]_B$ using a matrix C.

(h) Find an invertible matrix C so that $[\operatorname{proj}_W]_B = C^{-1} * [\operatorname{proj}_W] * C$

Activity 3: Proofs

Let $(V, \oplus, \odot, \langle \cdot | \cdot \rangle)$ inner product spcae.

- (a) **Prove:** Let $W = \text{Span}(\{\vec{v}_1, \ldots, \vec{v}_k\}) \subseteq V$. If $\vec{v} \in V$ is orthogonal to each \vec{v}_j , for $1 \leq j \leq k$, then \vec{v} is orthogonal to every vectors in W.
- (b) Pick one and provide a proof. You may want to prove all of these, as I will put one on the test.
 - (i) **Prove:** The **Cauchy-Scwharz Inequality**: For all vectors $\vec{u}, \vec{v} \in V$,

 $|\langle \vec{u} \,|\, \vec{v} \rangle| \le \|\vec{u}\| \cdot \|\vec{v}\|.$

Hint: See your class notes from §1.3 where we proved it for \mathbb{R}^n . Adapt that proof by using notation from V. OR, you can consult our textbook for a different proof.

(ii) **Prove:** The **Triangle Inequality**: For all vectors $\vec{u}, \vec{v} \in V$,

$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|.$$

Hint: See your class notes from §1.3 where we proved it for \mathbb{R}^n . Adapt that proof by using notation from V. OR, you can consult our textbook for a different proof.

(iii) **Prove:** The **Triangle Inequality (Distance Version)**: For all vectors $\vec{u}, \vec{v}, \vec{w} \in V$,

$$dist(\vec{u}, \vec{v}) \le dist(\vec{u}, \vec{w}) + dist(\vec{w}, \vec{v}).$$

Hint: See your class notes from §1.3 where we proved it for \mathbb{R}^n . Adapt that proof by using notation from V. OR, you can consult our textbook for a different proof.

(iv) **Prove:** The (Generalized) Pythagorean Theorem: Let $\vec{u}, \vec{v} \in V$.

Then \vec{u} and \vec{v} are **orthogonal** to each other if and only if

$$\|\vec{u}\|^2 + \|\vec{v}\|^2 = \|\vec{u} + \vec{v}\|^2.$$

Hint: See your class notes from §1.3 where we proved it for \mathbb{R}^n . Adapt that proof by using notation from V. OR, you can consult our textbook for a different proof.