In-class Assignment \#10

§7.1-7.3

Dr. Jorge Basilio gbasilio@pasadena.edu

Activity 1: Definitions

Write the precise definitions of the following terms: Let V be an abstract vector space.
(a) an inner product $\langle\cdot \mid \cdot\rangle$ on V. State the 4 properties required carefully.
(b) an inner product spcae $(V, \oplus, \odot,\langle\cdot \mid \cdot\rangle)$.
(c) the norm of a vector \vec{v} in an inner product space V.
(d) the distance between two vectors \vec{v} and \vec{w} in an inner product space V.
(e) When \vec{v} and \vec{w} are orthogonal vectors, when a set $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\} \subset V$ is an orthogonal set, and when S is an orthogonal basis for V.
(f) when S is an orthonormal set and when S is an orthonormal basis.
(g) the orthogonal complement W^{\perp} of a subspace $W \subset V$.

Activity 2: Computation

Let

$$
S=\{\langle 1,0,-2,1\rangle, \quad\langle-1,1,1,-1\rangle, \quad\langle 0,1,-1,1\rangle, \quad\langle 1,0,1,-1\rangle\}
$$

(a) Apply the Gram-Schmidt Algorithm to S.
(b) Let $\vec{v}=\langle-5,2,-4,8\rangle$. Find the coordinates $\langle\vec{v}\rangle_{B}$ where B is the output of (a).

For the rest of this activity, let $W=\operatorname{Span}(\{\langle 1,0,-2,1\rangle,\langle-1,1,1,-1\rangle\})$
(c) Find an orthonormal basis for W, and one for W^{\perp}.

Hint: you don't need to do any new computations!
(d) Use (b) to find the orthogonal decomposition $\vec{v}=\vec{a}+\vec{b}$ where $\vec{a} \in W$ and $\vec{b} \in W^{\perp}$.
(e) Find the projection matrix $\left[\operatorname{proj}_{W}\right]$.
(f) Check that (e) is correct by multiplying it to \vec{v} from part (b). You should get the \vec{a} from part (d).
(g) Find projection matrix $\left[\operatorname{proj}_{W}\right]_{B}$ where B is the output of part (a).

Hint: this should be surprisingly simple!
Notice that your answer in part (g) should be a diagonal matrix. Thus, by our knowledge of eigentheory, we know that we can diagonalize $\left[\operatorname{proj}_{W}\right]$ into $\left[\operatorname{proj}_{W}\right]_{B}$ using a matrix C.
(h) Find an invertible matrix C so that $\left[\operatorname{proj}_{W}\right]_{B}=C^{-1} *\left[\operatorname{proj}_{W}\right] * C$

Activity 3: Proofs

Let $(V, \oplus, \odot,\langle\cdot \mid \cdot\rangle)$ inner product spcae.
(a) Prove: Let $W=\operatorname{Span}\left(\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}\right) \subseteq V$. If $\vec{v} \in V$ is orthogonal to each \vec{v}_{j}, for $1 \leq j \leq k$, then \vec{v} is orthogonal to every vectors in W.
(b) Pick one and provide a proof. You may want to prove all of these, as I will put one on the test.
(i) Prove: The Cauchy-Scwharz Inequality: For all vectors $\vec{u}, \vec{v} \in V$,

$$
|\langle\vec{u} \mid \vec{v}\rangle| \leq\|\vec{u}\| \cdot\|\vec{v}\| .
$$

Hint: See your class notes from $\S 1.3$ where we proved it for \mathbb{R}^{n}. Adapt that proof by using notation from V. OR, you can consult our textbook for a different proof.
(ii) Prove: The Triangle Inequality: For all vectors $\vec{u}, \vec{v} \in V$,

$$
\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\| .
$$

Hint: See your class notes from $\S 1.3$ where we proved it for \mathbb{R}^{n}. Adapt that proof by using notation from V. OR, you can consult our textbook for a different proof.
(iii) Prove: The Triangle Inequality (Distance Version): For all vectors $\vec{u}, \vec{v}, \vec{w} \in V$,

$$
\operatorname{dist}(\vec{u}, \vec{v}) \leq \operatorname{dist}(\vec{u}, \vec{w})+\operatorname{dist}(\vec{w}, \vec{v}) .
$$

Hint: See your class notes from $\S 1.3$ where we proved it for \mathbb{R}^{n}. Adapt that proof by using notation from V. OR, you can consult our textbook for a different proof.
(iv) Prove: The (Generalized) Pythagorean Theorem: Let $\vec{u}, \vec{v} \in V$.

Then \vec{u} and \vec{v} are orthogonal to each other if and only if

$$
\|\vec{u}\|^{2}+\|\vec{v}\|^{2}=\|\vec{u}+\vec{v}\|^{2}
$$

Hint: See your class notes from $\S 1.3$ where we proved it for \mathbb{R}^{n}. Adapt that proof by using notation from V. OR, you can consult our textbook for a different proof.

