

9_9_2019

Dr. Jorge Basilio
gbasilio@pasadena.edu

Activity 1: Linear Combination

Suppose that $\vec{u}=\langle 3,-2,6,-4,1\rangle$, and $\vec{v}=\langle 4,-3,8,-5,0\rangle$. Is it possible to write $\langle 4,-1,8,-7,8\rangle$ as a linear combination of \vec{u} and \vec{v} ? If so, how?

Activity 2: Parallel Vectors in \mathbb{R}^{2}

The goal of this item is to show that if $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle$ are vectors in \mathbb{R}^{2}, then, \vec{u} and \vec{v} are parallel to each other if and only if $u_{1} v_{2}-u_{2} v_{1}=0$.
(a) Begin by stating the definition of \vec{u} and \vec{v} being parallel to each other (note: in our textbook/class slides....not the above statement!).
(b) (\Longrightarrow) Prove the forward implication: Show that if $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle$ are parallel to each other, then $u_{1} v_{2}-u_{2} v_{1}=0$. Hint: just use direct substitution using (a).
(c) (\Longleftarrow) Prove the backward implication: Show that if $u_{1} v_{2}-u_{2} v_{1}=0$, then $\vec{u}=a \cdot \vec{v}$ for some $a \in \mathbb{R}^{2}$ or $\vec{v}=b \cdot \vec{u}$ for some $b \in \mathbb{R}^{2}$. In other words, to reach this conclusion, you must be able to find the value of a or b.
Hint: do a Case-by-Case Analysis with Case 1: $u_{1} \neq 0$, and Case 2: $u_{1}=0$. Recall that $\overrightarrow{0}_{2}$ is parallel to all vectors in \mathbb{R}^{2}, and a non-zero number has a reciprocal (Recall the axioms of \mathbb{R}). Case 2 will have sub-cases: Case 2a: $u_{2} \neq 0$, and Case $2 \mathrm{~b}: u_{2}=0$.
Be sure to explain carefully in Case 2 a why $\left\langle 0, u_{2}\right\rangle$ is parallel to $\left\langle 0, v_{2}\right\rangle$.

Activity 3: Contrapositive

Write down the contrapositive of the Theorem in the previous Activity.

Activity 4:

Use the previous item to show that if $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}\right\rangle$ are vectors in \mathbb{R}^{2} that are not parallel to each other, then any vector $\langle x, y\rangle \in \mathbb{R}^{2}$ can be written as a linear combination of \vec{u} and \vec{v}.
In other words, you have to show that for any $\langle x, y\rangle \in \mathbb{R}^{2}$, we can solve the vector equation $\langle x, y\rangle=$ $r \vec{u}+s \vec{v}$ for r and s. You will have to do a Case-by-Case Analysis. We suggest the cases: (1) neither u_{1} nor u_{2} is zero, and (2) either u_{1} or u_{2} is zero (explain why they cannot both be zero).

