9_16_2019

Dr. Jorge Basilio

gbasilio@pasadena.edu

Activity 1: Definitions

Write the precise definitions of the following terms:
(a) a linear combination of the vectors $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{n}$.
(b) the span of a set of vectors $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$

Activity 2:

You are given the following set of 5 vectors from \mathbb{R}^{4} :

$$
S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{5}\right\}=S=\{\langle 2,-3,4,-5\rangle, \quad\langle 1,-2,2,-3\rangle, \quad\langle 1,2,2,1\rangle, \quad\langle 5,-3,7,-6\rangle, \quad\langle 6,7,3,7\rangle\}
$$

and $\vec{b}=\langle 11,15,1,18\rangle \in \mathbb{R}^{4}$.
(a) Form the augmented matrix $[A \mid b]$.
(b) Use CoCalc/SageMath to compute the RREF of the augmented matrix.
(c) Just by looking at the RREF, explain why $\vec{b} \in \operatorname{Span}(S)$.
(d) Write down all the solutions x_{1}, \ldots, x_{5} to:

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{5} \vec{v}_{5}=\vec{b}
$$

Identify all the leading and free variables.
(e) By setting the free variables to zero, find the "simplest" solution to the equation in (d), and write your answer by rewriting the equation above with the coefficients substituted in. The answer involves only two of the five vectors in S.
(f) Can we write \vec{b} as a linear combination of only \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{5} ? If this is possible, give an example.
(g) Can we write \vec{b} as a linear combination of only \vec{v}_{3}, \vec{v}_{4}, and \vec{v}_{5} ? If this is possible, give an example.
(h) Can we write \vec{b} as a linear combination of only \vec{v}_{1}, \vec{v}_{2}, and \vec{v}_{3} ? If this is possible, give an example.

