

Dr. Jorge Basilio<br>gbasilio@pasadena.edu

## Activity 1: Definitions

Write the precise definitions of the following terms:
(a) a linearly dependent set of vectors $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.
(b) a linearly independent set of vectors $S=\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.
(c) a subspace $W$ of $\mathbb{R}^{n}$. Also, the trivial subspaces of $\mathbb{R}^{n}$.
(d) a basis of a non-zero subspace $W$ of $\mathbb{R}^{n}$.
(e) Given a finite set $X$, the cardinality of $X, \operatorname{card}(X)$.
(f) the dimension of a subspace $W$ of $\mathbb{R}^{n}$.
(g) the four fundamental subspaces of a matrix $A_{m \times n}$. Be sure to indicate the ambient spaces.
(h) The rank and nullity of a matrix $A_{m \times n}$.

## Activity 2: Proof

We would like to prove the following fact:
A non-empty subset $U \subseteq \mathbb{R}^{n}$ is a subspace of $\mathbb{R}^{n}$ if and only if $U=\operatorname{Span}(S)$ for some non-empty subset $S$ of $\mathbb{R}^{n}$.
(a) $(\Longrightarrow)$ Give a statement of the "Forward direction".
(b) $(\Longleftarrow)$ Give a statement of the "Backward direction".
(c) Which direction is the "easy" direction to prove? Explain why, or give a proof.
(d) Prove the other direction.

## Activity 3: Computation

Consider the augmented matrix:

$$
[A \mid \vec{b}]=\left[\begin{array}{cccccc:c}
3 & -5 & 1 & -3 & -3 & 4 & 3 \\
4 & -6 & 4 & -2 & -3 & 2 & 8 \\
1 & -5 & -13 & -11 & -6 & 18 & -19 \\
-2 & 4 & 2 & 4 & 2 & 2 & 0 \\
26 & -38 & 30 & -10 & -23 & 48 & 48
\end{array}\right] ; \text { RREF: } R=\left[\begin{array}{cccccc:c}
1 & 0 & 7 & 4 & 0 & 5 & 8 \\
0 & 1 & 4 & 3 & 0 & 7 & 3 \\
0 & 0 & 0 & 0 & 1 & -8 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis for the rowspace of $A, R S(A)$, using the information in $R$. (Reminder: $A$ is only the first 6 columns)
(b) Find a basis for the columnspace of $A, C S(A)$.
(c) Find a basis for the nullspace of $A, N S(A)$. (You can use the "sight-seeing" mentioned in the textbook if you wish. Just be careful with free variables!)
(d) Express the non-basis columns of $A$ as linear combinations of the basis vectors that you chose in part (b). (Hint: what I call "magic")
(e) Describe all the solutions to $A \vec{x}=\vec{b}$ in the form $\vec{x}_{P}+\vec{x}_{h}$ where $\vec{x}_{P}$ is a particular solution, and $\vec{x}_{h}$ represents solutions to the homogenous system.
(f) Express row 3 of $A$ as a linear combination of your basis in part (a).

Now, you are also given that $\operatorname{RREF}\left(A^{\top}\right)$ is $R^{\prime}$ and:

$$
R^{\prime}=\left[\begin{array}{ccccc}
1 & 0 & 7 & 0 & 8 \\
0 & 1 & -5 & 0 & 3 \\
0 & 0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(Notice we don't include $\vec{b}$ in the transpose.)
(g) Find a basis for the nullspace of $A^{\top}, N S\left(A^{\top}\right)$.
(h) State the Dimension Theorem for Matrices, in general. (Don't forget it is both parts!)
(i) State the rank and the nullity of $A$ and also $A^{\top}$, and verify the Dimension Theorem for $A$ and $A^{\top}$.
(j) Now, use the information in $R^{\prime}$ to find another basis for $R S(A)$. (Hint: the rows of $A$ become the columns of $A^{\top}$.)
(k) Express the 3rd row of $A$ as a linear combination of the basis you found in part (j). (You'll need to set-up a SOE and use GJE to arrive at your answer)
(l) What is the nullity of $A^{\top}$ ? Explain how you got your answer. (Hint: Warning! Do not find $R R E F\left(A^{\top}\right)$. You don't need it!)

