

Dr. Jorge Basilio
gbasilio@pasadena.edu

Activity 1: Definitions

Write the precise definitions of the following terms:
(a) when two vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ are orthongonal.
(b) the orthogonal complement W^{\perp} of a subspace W of \mathbb{R}^{n}.
(c) a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Activity 2: Proof

Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation. We'd like to prove that $T\left(\overrightarrow{0}_{n}\right)=\overrightarrow{0}_{m}$.
(a) Prove it using the Equivalence of Linear Transformations and Matrices Theorem (recall this says: T is a LT iff $T=[A]$ for some $m \times n$ matrix)
(b) Prove it directly from the definition of a linear transformation using the Additivity Property. Hint: Consider $T\left(\overrightarrow{0}_{n}+\overrightarrow{0}_{n}\right)$ and use the properties of vector arithmetic from Ch 1 (this proof is similar in spirit to proofs from Axioms).
(c) Prove it directly from the definition of a linear transformation using the Homogeneity Property. Hint: How can the idea of part (b) be adapted? Hint: Use the properties of vector arithmetic from Ch 1 (this proof is similar in spirit to proofs from Axioms).

Activity 3: Computation

Let $A=\left[\begin{array}{cccc}2 & -1 & -5 & 0 \\ 1 & 3 & 1 & 6 \\ 4 & 0 & -1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}9 & 6 & 0 \\ 4 & 1 & 1 \\ -1 & -5 & 0 \\ 1 & -1 & 1\end{array}\right]$. Compute the following, if possible. If it is impossible, explain why not.
(a) $A B$
(b) $B A$
(c) $A+B^{\top}$.

Show all your STEPS! Indicate the size of your matrices in the lower, right-hand corner and underline or box the rows and columns to indicate the dot products of matrix multiplication.

Activity 4: Computation

Suppose that:

$$
\begin{aligned}
S= & \left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \vec{w}_{4}, \vec{w}_{5}, \vec{w}_{6}\right\} \\
= & \{\langle 3,5,-4,3,3,5\rangle,\langle-2,-4,6,-4,-2,0\rangle,\langle 1,-1,12,-7,-1,-1\rangle, \\
& \langle 5,6,5,-2,3,4\rangle,\langle 0,-1,5,-3,-1,-3\rangle,\langle 4,6,-2,2,4,10\rangle\} \subset \mathbb{R}^{6}
\end{aligned}
$$

Let $W=\operatorname{Span}(S)$. The vectors in S are assembled into the rows of a matrix A, and its RREF R is shown below. They are also assembled into the columns of a matrix, and its RREF R^{\prime} is also shown below:

$$
R=\left[\begin{array}{cccccc}
1 & 0 & 7 & -4 & 0 & 2 \\
0 & 1 & -5 & 3 & 0 & -5 \\
0 & 0 & 0 & 0 & 1 & 8 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \text { and } R^{\prime}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & -1 / 2 & 2 \\
0 & 1 & 0 & -1 / 2 & -1 / 2 & 1 \\
0 & 0 & 1 & 1 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis for W using the information in R.
(b) Find a basis for W using the information in R^{\prime}.
(c) Find a basis for W^{\perp}. Which RREF should you use?

The bases in (a) through (c) should have integer components.
Now, use the Two-for-One Theorem to decide if the following sets of vectors also form a basis for W. In other words, check that the sets have the correct number of vectors, and these vectors are linearly independent. You may use only the information in R and R^{\prime}. The computations should be very simple.
(d) $\left\{\vec{w}_{2}, \vec{w}_{3}, \vec{w}_{4}\right\}$
(e) $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{5}, \vec{w}_{6}\right\}$
(f) $\left\{\vec{w}_{2}, \vec{w}_{4}, \vec{w}_{5}\right\}$
(g) $\left\{\vec{w}_{2}, \vec{w}_{6}\right\}$
(h) $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{6}\right\}$

Activity 5: Computation

Let $T_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ and $T_{2}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$,

$$
\begin{gathered}
T_{1}(\langle x, y, z\rangle)=\langle 2 x-3 y, 5 y-7 z, x-y+4 z, 6 x+y-z\rangle \\
T_{2}\left(\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle\right)=\left\langle 5 x_{1}+2 x_{3}-x_{4}, 2 x_{1}+8 x_{2}-6 x_{3}+7 x_{4}\right\rangle
\end{gathered}
$$

(a) Find $\left[T_{1}\right]$ and its dimension.
(b) Find $\left[T_{2}\right]$ and its dimension.
(c) Compute $T_{2} \circ T_{1}$ using the definition.
(d) Compute $\left[T_{2} \circ T_{1}\right]$. Hint: use matrix multiplication.

