MATH 10 - Linear Algebra		Fall 2019
Ch 2 Linear Transformation	ns	In-class Assignment #6
$\S2.5, 2.6, 2.7$		Dr. Jorge Basilio
10_28_2019	CITY COLLEGE	gbasilio@pasadena.edu

Activity 1: Definitions

Write the precise definitions of the following terms:

- Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
- (a) the kernel of T
- (b) the range of T
- (c) the **nullity of** T
- (d) the rank of T
- (e) when T is **one-to-one**
- (f) when T is **onto**

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. Write the precise definitions of the following terms:

- (g) when T is **invertible**
- (h) the inverse operator of T, T^{-1}

Let $A \in \mathbb{M}_{m \times n}(\mathbb{R})$. Write the precise definitions of the following terms:

- (i) when A is **invertible**
- (j) the inverse matrix, A^{-1}

Activity 2: Easy Computation

Find the **inverse** of the matrix $\begin{bmatrix} 2 & -3 \\ 7 & 4 \end{bmatrix}$. You may use the formula given in class for 2×2 matrices if you wish.

Activity 3: Computation

Let
$$A = \begin{bmatrix} 5 & 9 & -4 \\ 2 & -1 & 7 \\ -3 & -8 & 6 \end{bmatrix}$$
.

- (a) Take turns around the group to decide what row operations to do next with the goal of finding A^{-1} using GJE.
- (b) Use your row operations to factor A into elementary matrices.

(Hint: First find the Elementary Matrices, E_1, E_2, \ldots, E_k based on the EROs. Then Recall that $A = E_1^{-1} * E_2^{-1} * \cdots E_{k-1}^{-1} * E_k^{-1}$)

(c) Use A^{-1} to solve the SOE:

$$5x + 9y - 4z = 3$$

$$2x - y + 7z = -4$$

$$-3x - 8y + 6z = 11$$

Activity 4: Proof

The purpose of this Exercise is to investigate the **kernel** and/or **range** of the composition of two linear transformations. Suppose that:

$$T_1: \mathbb{R}^n \to \mathbb{R}^k$$
 and $T_2: \mathbb{R}^k \to \mathbb{R}^m$

are linear transformations.

- (a) Adapt this definition in Activity 1 part (a) to write down the definition of ker (T_1) , ker (T_2) , and ker $(T_2 \circ T_1)$ as set up above. There should be THREE separate definitions. Make sure that you precisely use the symbols \mathbb{R}^n , \mathbb{R}^k , \mathbb{R}^m , $\vec{0}_n$, $\vec{0}_k$, and $\vec{0}_m$, where appropriate.
- (b) Two out of the three subspaces that you defined in (b) are subspaces of the same Euclidean space. Which of the two kernels live in the same Euclidean space?
- (c) Use your definitions to prove that $\ker(T_1)$ is a subset of $\ker(T_2 \circ T_1)$. That is,

$$\ker(T_1) \subseteq \ker(T_2 \circ T_1).$$

(Hint: This means that you must show that every vector \vec{v} that satisfies the definition of ker (T_1) also satisfies the definition of ker $(T_2 \circ T_1)$. Start with a vector \vec{v} belonging to ker (T_1) and show that it also belongs to ker $(T_2 \circ T_1)$.)

- (d) Use part (c) to prove that if $T_2 \circ T_1$ is one-to-one, then T_1 is also one-to-one.
- (e) Write the contrapositive to the statement in part (d).

Activity 5: Some important Theorems

Here we review a few important theorems.

(a) The following theorems are each equivalent statements to T being one-to-one. Fill-in the blank:

 $T \text{ is 1-1 iff } [\text{ if } T(\vec{v_1}) = T(\vec{v_2}) \text{ then }]$

T is 1-1 iff ker(T) =_____

- T is 1-1 iff nullity(T) =_____
- T is 1-1 iff NS([T]) is _____
- T is 1-1 iff RREF([T]) has ______ free-variables

- (b) Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. That is all the information we are given. Fill-in the blank:
 - The rank(T) = _____ (select ONE: # leading or free variables)
 - The nullity(T) = ______ (select ONE: # leading or free variables)
 - If n < m, then we know that T cannot be ______ (select ONE: 1-1 or onto)
 - If n > m, then we know that T cannot be ______ (select ONE: 1-1 or onto)

Activity 6: Computation

Let $T: \mathbb{R}^5 \to \mathbb{R}^4$ be a linear transformation. Suppose that A = [T] is given by

$$A = [T] = \begin{bmatrix} 3 & 6 & 3 & -2 & -1 \\ -5 & -7 & -11 & 3 & -4 \\ -2 & -3 & -4 & 4 & 3 \\ 2 & 5 & 0 & 7 & -2 \end{bmatrix} \xrightarrow{\text{RREF}} R = \begin{bmatrix} 1 & 0 & 5 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (a) Find a **basis** for ker(T).
- (b) Is T **one-to-one**? Why or why not?
- (c) Find a **basis** for range(T).
- (d) Is T onto? Why or why not?
- (e) State the **Dimension Theorem**, in general, for any linear transformation.
- (f) Verify the Dimension Theorem for the linear transformation above.