MATH 10 - Linear Algebra		Fall 2019
Ch 3 Vector Spaces		In-class Assignment $\#7$
$\S{3.1, 3.2}$		Dr. Jorge Basilio
10_30_2019	CITY COLLEGE	gbasilio@pasadena.edu

Activity 1: Definitions

Write the precise definitions of the following terms:

- (a) list the 10 axioms of a vector space (V, \oplus, \odot) .
- (b) the **span** of a set of vectors $S = \{\vec{v}_i \mid i \in I\}$ of a vector space V.
- (c) the **linear independence** of a set of vectors $S = {\vec{v}_i \mid i \in I}$ of a vector space V.
- (d) a subspace W of V.
- (e) a **basis** and the **dimension** of a non-zero subspace W of a vector space (V, \oplus, \odot) .

Activity 2: Computation

Let $V=\mathbb{R}^2$ where we change both vector addition and scalar multiplication to:

$$\langle x_1, y_1 \rangle \oplus \langle x_2, y_2 \rangle = \langle x_1 + x_2 - 1, y_1 + y_2 + 2 \rangle$$

and

$$k \odot \langle x, y \rangle = \langle kx + 1, ky - 2 \rangle.$$

- (a) Warm-up: Compute $\langle 4, -3 \rangle \oplus \langle 2, 5 \rangle$ and $-3 \odot \langle 7, -2 \rangle$.
- (b) Is there a **zero vector** for V? (*Hint: Let* $\vec{z} = \langle a, b \rangle$ and attempt to solve the equations $\vec{z} \oplus \vec{v} = \vec{v}$ and $\vec{v} \oplus \vec{z} = \vec{v}$, for all $\vec{v} \in \mathbb{R}^2$.)
- (c) Are there **additive inverses**, $-\vec{v}$?
- (d) Does the **distributive rule** $(r + s) \odot \vec{v} = ????$ hold????
- (e) Does the **distributive rule** $r \odot (\vec{v} \oplus \vec{w}) = ????$ hold????

Activity 3: Computation

Consider the infinite set:

$$S = \left\{ xe^{-x}, x^2e^{-x/2}, x^3e^{-x/3}, \dots \right\}$$

Assume that the "obvious" pattern continues. This is a subset of $\mathcal{F}(\mathbb{R},\mathbb{R})$ (Actually, it is a subset of $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ -the infinitely differentiable real-valued functions).

- (a) Write this set using **set-builder** notation. What is your **indexing set**?
- (b) Decide wether or not S is linearly independent. Defend your answer.

Activity 4: Computation

Suppose that W be a subset of $V = \mathbb{P}^3$ defined by:

$$W = \{ p(x) \in \mathbb{P}^3 \mid p(-2) = -p(3) \text{ and } p'(4) = 2p''(1) \}.$$

(a) Show that W is a subspace of \mathbb{P}^3 .

(*Hint: what three properties do you need to show?*)

- (b) Find a basis for W.
- (c) What is $\dim(W)$?

Activity 5: Proof

Let $V = (V, \oplus, \odot)$ be a vector space. Note: you do not need to use the \oplus, \odot notation below. You may if you wish but it's not required.

- (a) **Prove:** The additive identity is unique. That is, for all $\vec{v} \in V$, if there exists a $\vec{w_v} \in V$ such that $\vec{v} + \vec{w_v} = \vec{0}_V$ and $\vec{w_v} + \vec{v} = \vec{0}_V$, then $-\vec{v} = \vec{w_v}$.
- (b) Let $r \in \mathbb{R}$, $\vec{v} \in V$. Prove: (Zero Factors Theorem) $r \odot \vec{v} = \vec{0}_V$ if and only if r = 0 OR $\vec{v} = \vec{0}_V$.