
MATH 10 - Linear Algebra Fall 2019

Linear Trans. and Determinants In-class Assignment #8

§3.4–3.8, 5.1–5.3 Dr. Jorge Basilio

11 20 2019 gbasilio@pasadena.edu

Activity 1: Definitions

Write the precise definitions of the following terms: Let (V,⊕,�) be an abstract vector space.

(a) a subspace W of V .

(b) a basis B of a subspace W ⊂ V .

(c) The dimension of a subspace W .

(d) Let V and W be abstract vector spaces. Define a linear transformation T : V → W .

(e) a one-to-one linear transformation T : V → W .

(f) a onto linear transformation T : V → W .

(g) when V and W are isomorphic vector spaces.

(h) State using precise notation (as given in class/book) what the matrix representation for T : V →
W is given the ordered bases B = {~v1, . . . , ~vn} for V and B′ = {~w1, . . . , ~wm} for W . Make sure you
give the overall notation for the matrix and what the columns are.

Activity 2: Computation

Let S = {sin(x)ex, cos(x)e−x}. Consider the linear operator on Span(S) defined by T = 3 · D+ 5 · Id. More
explicitly: T (f(x)) = (3 · D + 5 · Id)(f(x)) = 3 · D(f(x)) + 5 · Id(f(x)), or

T (f(x)) = 3f ′(x) + 5f(x)

(a) Compute: T (2 sin(x)ex + 3 cos(x)e−x).

(b) Use your calculation in part (a), to find the smallest vector space W so that T (f(x)) ∈ W for all
f(x) ∈ Span(S). That is, so that T : W → W is a linear operator on W .

Hint: this should require little to no work!

(c) Find the kernel ker(T ).

(d) (Optional) Find the range range(T ).
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Activity 3: Computation

Let T : P→ P be the function:
T (p(x)) = x · p(x).

Recall that dim(P) = ℵ0.

(a) Show that T is a linear transformation.

(b) Show that T is one-to-one.

(c) Show that T is NOT onto.

Activity 4: Computation

Suppose that T : P2 → P3 is a linear transformation given by

T (p(x)) = x · p(x) + p′(x)(x2 − 1) + p(−2)(x3 + 1).

(a) Which conclusion can we make right away, even without the matrix of T? That T is: not one-to-
one? not onto? Explain briefly your answer.

(b) Warm-up: Compute T (3x2 + 5x− 2).

(c) Explain briefly why T (p(x)) is in P3 if p(x) is from P2.

(d) Verify that T is a linear transformation.

Hint: This means you need to verify two properties: additivity and homogeneity.

(e) Now, let B = {1, x, x2} and B′ = {1, x, x2, x3} be ordered bases. Find [T ]B,B′ .

(f) Check (a) using Encode, Multiply, and Decode.

(g) Use technology, to find the RREF of the matrix representation of T found in part (d).

(h) Based on your matrix in the previous part, decide if T is one-to-one. Explain your answer.

(i) Based on your matrix in the previous part, decide if T is onto. Explain your answer.

(j) Find the kernel ker(T ), if possible.

(k) Find the range range(T ), if possible.

(l) State the rank and nullity of T .

(m) State the Dimension Theorem for general linear transformations between abstract vector spaces
V and W . Verify the dimension theorem holds for T .
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Activity 5: Computation

Our goal is to find the determinant of the matrix A below. Please follow the instructions. Note that the
result of each part is used in the next part.

A =


−2 −16 24 −1
−9 0 −36 15
7 4 −4 6
5 12 16 2


(a) Divide the third column by -4. How is the determinant of this new matrix related to det(A)?

(b) Divide the second row of the matrix in (a) by 3. How is the determinant of this new matrix related
to det(A)?

(c) Produce a leading 1 in row 1, column 1 by exchanging row 1 and row 3, and then column 1 and col-
umn 3, in the matrix in (b). How is the determinant of this new matrix related to det(A)?

(d) Turn the other entires of column 1 into zeros. Show all EROs.

(e) Complete the computation of the determinant of A using EROs to obtain an upper-triangular ma-
trix. Show all EROs.

Activity 6: Proofs

Let V and W be abstract vector spaces. Let T : V → W be a linear transformation. Assume now that V
and W are finite-dimensional vector spaces of dimensions n and m, respectively. That is, dim(V ) = n and
dim(W ) = m.

(a) Prove: Let S = {~v1, ~v2, . . . , ~vn} be a set of linearly independent vectors from V . If T is one-to-
one, then the set S ′ = {T (~v1), T (~v2), . . . , T (~vn)} in W is also linearly independent.

(b) Prove: Assume now that n = m. If B = {~v1, ~v2, . . . , ~vn} is a basis for V , then B′ =
{T (~v1), T (~v2), . . . , T (~vn)} is a basis for W .

Hint: use part (a) and the 2 for 1 theorem. This should be easy.

(c) Prove: If T is onto, then dim(V ) ≥ dim(W ).

Hint: use the dimension theorem.

(d) Prove: If dim(V ) > dim(W ), then T cannot be one-to-one.

Hint: use the dimension theorem.
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Optional material

You do NOT need to turn these problems in! These are strictly optional and for your entertainment :-)

Activity 7: Proofs

Let V and W be abtract vector spaces. Note: we are not assuming they are finite-dimensional, they can
be infinite dimensional here.

We investigate L(V,W ) which is the set of ALL linear transformations T : V → W .
We make L(V,W ) into a vector space (L(V,W ),⊕L(V,W ),�L(V,W )) using the usual definitions:

• Vector Addition: Given T1, T2 ∈ L(V,W ), define T1⊕L(V,W ) T2 ∈ L(V,W ) to be the linear transfor-
mation:

(T1 ⊕L(V,W ) T2)(~v) = T1(~v) + T2(~v) (for all ~v ∈ V )

Simply put: (T1 + T2)(~v) = T1(~v) + T2(~v).

• Scalar Multiplication: Given T ∈ L(V,W ) and r ∈ R, define r �L(V,W ) T ∈ L(V,W ) to be the
linear transformation:

(r �L(V,W ) T )(~v) = r · T (~v) (for all ~v ∈ V )

Simply put: (r · T )(~v) = r · T (~v).

Go to page 270 of our textbook and mentally check that all 10 VSAs are satisfied.
All that I ask is to tell me what the zero vector ~0L(V,W ) and the additive inverse of T ∈ L(V,W ) are.

Activity 8: Proofs

Our goal is to prove the important result:

Theorem 1: Isomorphism Theorem

Assume that V and W be abtract finite-dimensional vector spaces of dimensions n and m, respec-
tively, i.e. dim(V ) = n and dim(W ) = m.

Then L(V,W ) is isomorpthic to Mm×n, i.e. L(V,W ) ∼= Mm×n .

To get started, we choose ordered bases B for V and B′ for W , which we may do by the Existence of a
basis theorem. Next, we write them as:

B = {~v1, . . . , ~vn} and B′ = {~w1, . . . , ~wm}.

Then we define a function Φ : L(V,W ) → Mm×n as follows: Given T ∈ L(V,W ), we define Φ(T ) ∈ Mm×n
via

Φ(T ) = [T ]B,B′ .

(a) Show that Φ is a linear transformation. You may use Problem 41 from §3.6 without proof.

(b) Show that Φ is one-to-one. Hint: If T ∈ ker(Φ), then show it is the zero transformation.

(c) Show that Φ is onto by following the following outline:

(i) Assume A ∈Mm×n is given. Fill-in the blank:

We need to show there exits T ∈ L(V,W ) such that .
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(ii) We construct T : B → W as follows: define [T (~vi)]B′ = A ∗ [~vi]B for each basis vector ~vi ∈ B.
Use the matrix notation A = (aij) and your knowledge of matrix multiplication express A∗ [~vi]B.
Then DECODE this to express T (~vi) using the basis B′.

(iii) Extend this map to a linear transformation on all of V . Hint: this is a one liner, there’s only
one obvious way to do this and don’t verify it’s a LT.

(iv) Explain why T : V → W constructed in parts (ii),(iii) is the desired linear transformation
needed to prove Φ is onto.

5


	Optional material

