Linear Trans. and Determinants

In-class Assignment \#8

§3.4-3.8, 5.1-5.3
11_20_2019

Dr. Jorge Basilio
gbasilio@pasadena.edu

Activity 1: Definitions

Write the precise definitions of the following terms: Let (V, \oplus, \odot) be an abstract vector space.
(a) a subspace W of V.
(b) a basis B of a subspace $W \subset V$.
(c) The dimension of a subspace W.
(d) Let V and W be abstract vector spaces. Define a linear transformation $T: V \rightarrow W$.
(e) a one-to-one linear transformation $T: V \rightarrow W$.
(f) a onto linear transformation $T: V \rightarrow W$.
(g) when V and W are isomorphic vector spaces.
(h) State using precise notation (as given in class/book) what the matrix representation for $T: V \rightarrow$ W is given the ordered bases $B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ for V and $B^{\prime}=\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$ for W. Make sure you give the overall notation for the matrix and what the columns are.

Activity 2: Computation

Let $S=\left\{\sin (x) e^{x}, \cos (x) e^{-x}\right\}$. Consider the linear operator on $\operatorname{Span}(S)$ defined by $T=3 \cdot \mathcal{D}+5 \cdot$ Id. More explicitly: $T(f(x))=(3 \cdot \mathcal{D}+5 \cdot \operatorname{Id})(f(x))=3 \cdot \mathcal{D}(f(x))+5 \cdot \operatorname{Id}(f(x))$, or

$$
T(f(x))=3 f^{\prime}(x)+5 f(x)
$$

(a) Compute: $T\left(2 \sin (x) e^{x}+3 \cos (x) e^{-x}\right)$.
(b) Use your calculation in part (a), to find the smallest vector space W so that $T(f(x)) \in W$ for all $f(x) \in \operatorname{Span}(S)$. That is, so that $T: W \rightarrow W$ is a linear operator on W.
Hint: this should require little to no work!
(c) Find the kernel $\operatorname{ker}(T)$.
(d) (Optional) Find the range range (T).

Activity 3: Computation

Let $T: \mathbb{P} \rightarrow \mathbb{P}$ be the function:

$$
T(p(x))=x \cdot p(x)
$$

Recall that $\operatorname{dim}(\mathbb{P})=\aleph_{0}$.
(a) Show that T is a linear transformation.
(b) Show that T is one-to-one.
(c) Show that T is NOT onto.

Activity 4: Computation

Suppose that $T: \mathbb{P}^{2} \rightarrow \mathbb{P}^{3}$ is a linear transformation given by

$$
T(p(x))=x \cdot p(x)+p^{\prime}(x)\left(x^{2}-1\right)+p(-2)\left(x^{3}+1\right) .
$$

(a) Which conclusion can we make right away, even without the matrix of T ? That T is: not one-toone? not onto? Explain briefly your answer.
(b) Warm-up: Compute $T\left(3 x^{2}+5 x-2\right)$.
(c) Explain briefly why $T(p(x))$ is in \mathbb{P}^{3} if $p(x)$ is from \mathbb{P}^{2}.
(d) Verify that T is a linear transformation.

Hint: This means you need to verify two properties: additivity and homogeneity.
(e) Now, let $B=\left\{1, x, x^{2}\right\}$ and $B^{\prime}=\left\{1, x, x^{2}, x^{3}\right\}$ be ordered bases. Find $[T]_{B, B^{\prime}}$.
(f) Check (a) using Encode, Multiply, and Decode.
(g) Use technology, to find the RREF of the matrix representation of T found in part (d).
(h) Based on your matrix in the previous part, decide if T is one-to-one. Explain your answer.
(i) Based on your matrix in the previous part, decide if T is onto. Explain your answer.
(j) Find the kernel $\operatorname{ker}(T)$, if possible.
(k) Find the range range (T), if possible.
(l) State the rank and nullity of T.
(m) State the Dimension Theorem for general linear transformations between abstract vector spaces V and W. Verify the dimension theorem holds for T.

Activity 5: Computation

Our goal is to find the determinant of the matrix A below. Please follow the instructions. Note that the result of each part is used in the next part.

$$
A=\left[\begin{array}{cccc}
-2 & -16 & 24 & -1 \\
-9 & 0 & -36 & 15 \\
7 & 4 & -4 & 6 \\
5 & 12 & 16 & 2
\end{array}\right]
$$

(a) Divide the third column by -4 . How is the determinant of this new matrix related to $\operatorname{det}(A)$?
(b) Divide the second row of the matrix in (a) by 3. How is the determinant of this new matrix related to $\operatorname{det}(A)$?
(c) Produce a leading 1 in row 1 , column 1 by exchanging row 1 and row 3 , and then column 1 and column 3 , in the matrix in (b). How is the determinant of this new matrix related to $\operatorname{det}(A)$?
(d) Turn the other entires of column 1 into zeros. Show all EROs.
(e) Complete the computation of the determinant of A using EROs to obtain an upper-triangular matrix. Show all EROs.

Activity 6: Proofs

Let V and W be abstract vector spaces. Let $T: V \rightarrow W$ be a linear transformation. Assume now that V and W are finite-dimensional vector spaces of dimensions n and m, respectively. That is, $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$.
(a) Prove: Let $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ be a set of linearly independent vectors from V. If T is one-toone, then the set $S^{\prime}=\left\{T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), \ldots, T\left(\vec{v}_{n}\right)\right\}$ in W is also linearly independent.
(b) Prove: Assume now that $n=m$. If $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is a basis for V, then $B^{\prime}=$ $\left\{T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), \ldots, T\left(\vec{v}_{n}\right)\right\}$ is a basis for W.

Hint: use part (a) and the 2 for 1 theorem. This should be easy.
(c) Prove: If T is onto, then $\operatorname{dim}(V) \geq \operatorname{dim}(W)$.

Hint: use the dimension theorem.
(d) Prove: If $\operatorname{dim}(V)>\operatorname{dim}(W)$, then T cannot be one-to-one.

Hint: use the dimension theorem.

You do NOT need to turn these problems in! These are strictly optional and for your entertainment :-)

Activity 7: Proofs

Let V and W be abtract vector spaces. Note: we are not assuming they are finite-dimensional, they can be infinite dimensional here.
We investigate $\mathcal{L}(V, W)$ which is the set of ALL linear transformations $T: V \rightarrow W$.
We make $\mathcal{L}(V, W)$ into a vector space $\left(\mathcal{L}(V, W), \oplus_{\mathcal{L}(V, W)}, \odot_{\mathcal{L}(V, W)}\right)$ using the usual definitions:

- Vector Addition: Given $T_{1}, T_{2} \in \mathcal{L}(V, W)$, define $T_{1} \oplus_{\mathcal{L}(V, W)} T_{2} \in \mathcal{L}(V, W)$ to be the linear transformation:

$$
\left(T_{1} \oplus_{\mathcal{L}(V, W)} T_{2}\right)(\vec{v})=T_{1}(\vec{v})+T_{2}(\vec{v}) \quad(\text { for all } \vec{v} \in V)
$$

Simply put: $\left(T_{1}+T_{2}\right)(\vec{v})=T_{1}(\vec{v})+T_{2}(\vec{v})$.

- Scalar Multiplication: Given $T \in \mathcal{L}(V, W)$ and $r \in \mathbb{R}$, define $r \odot_{\mathcal{L}(V, W)} T \in \mathcal{L}(V, W)$ to be the linear transformation:

$$
\left(r \odot_{\mathcal{L}(V, W)} T\right)(\vec{v})=r \cdot T(\vec{v}) \quad(\text { for all } \vec{v} \in V)
$$

Simply put: $(r \cdot T)(\vec{v})=r \cdot T(\vec{v})$.
Go to page 270 of our textbook and mentally check that all 10 VSAs are satisfied.
All that I ask is to tell me what the zero vector $\overrightarrow{\mathbf{0}}_{\mathcal{L}(V, W)}$ and the additive inverse of $T \in \mathcal{L}(V, W)$ are.

Activity 8: Proofs

Our goal is to prove the important result:

Theorem 1: Isomorphism Theorem

Assume that V and W be abtract finite-dimensional vector spaces of dimensions n and m, respectively, i.e. $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$.
Then $\mathcal{L}(V, W)$ is isomorpthic to $\mathbb{M}_{m \times n}$, i.e. $\mathcal{L}(V, W) \cong \mathbb{M}_{m \times n}$.
To get started, we choose ordered bases B for V and B^{\prime} for W, which we may do by the Existence of a basis theorem. Next, we write them as:

$$
B=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\} \quad \text { and } \quad B^{\prime}=\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\} .
$$

Then we define a function $\Phi: \mathcal{L}(V, W) \rightarrow \mathbb{M}_{m \times n}$ as follows: Given $T \in \mathcal{L}(V, W)$, we define $\Phi(T) \in \mathbb{M}_{m \times n}$ via

$$
\Phi(T)=[T]_{B, B^{\prime}}
$$

(a) Show that Φ is a linear transformation. You may use Problem 41 from $\S 3.6$ without proof.
(b) Show that Φ is one-to-one. Hint: If $T \in \operatorname{ker}(\Phi)$, then show it is the zero transformation.
(c) Show that Φ is onto by following the following outline:
(i) Assume $A \in \mathbb{M}_{m \times n}$ is given. Fill-in the blank:

We need to show there exits $T \in \mathcal{L}(V, W)$ such that
(ii) We construct $T: B \rightarrow W$ as follows: define $\left[T\left(\vec{v}_{i}\right)\right]_{B^{\prime}}=A *\left[\vec{v}_{i}\right]_{B}$ for each basis vector $\vec{v}_{i} \in B$. Use the matrix notation $A=\left(a_{i j}\right)$ and your knowledge of matrix multiplication express $A *\left[\vec{v}_{i}\right]_{B}$. Then DECODE this to express $T\left(\vec{v}_{i}\right)$ using the basis B^{\prime}.
(iii) Extend this map to a linear transformation on all of V. Hint: this is a one liner, there's only one obvious way to do this and don't verify it's a LT.
(iv) Explain why $T: V \rightarrow W$ constructed in parts (ii),(iii) is the desired linear transformation needed to prove Φ is onto.

