MATH 10 - Linear Algebra		Fall 2019
Eigentheory	In-class Assig	nment $#9$
6.1-6.3	Dr	. Jorge Basilio
11_27_2019	PASADENA CITY COLLEGE gbasilio	@pasadena.edu

Activity 1: Definitions

Write the precise definitions of the following terms: Let $A \in \mathbb{M}_{n \times n}$.

- (a) **eigenvalue**, **eigenvector**, and **eigenspace** for a matrix A.
- (b) characteristic polynomial and the characteristic equation for A.
- (c) A is **diagonalizable**.
- (d) algebraic multiplicity and geometric multiplicity.

Activity 2: Computation

Let

	7	0	0	0
$A = \begin{vmatrix} 15\\6\\21 \end{vmatrix}$	15	-3	0	0
	6	-4	7	0
	21	-14	35	-3
				-

- (a) Find the characteristic polynomial $p_A(\lambda)$.
- (b) Find the **eigenvalues**.
- (c) Find a basis for each **eigenspace**.
- (d) What is the **dimension** of each eigenspace?
- (e) Determine whether or not the algebraic multiplicity equals the geometric multiplicity for each eigenspace.
- (f) Find C and D so that $A = CDC^{-1}$, if possible. Arrange D so that the eigenvalues are increasing.
- (g) Compute: A^4 without using technology (sci calc is ok, just no SAGEMath). Show work!

Activity 3: Computation

(a) Show that $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is not diagonalizable.

(b) Which of the following matrices are diagonalizable, and why?

A. $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ B. $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$ C. $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ D. $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

Activity 4: Proofs

Let $A \in \mathbb{M}_{n \times n}$. Let $T_A : \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation associated to A, i.e. $T_A(\vec{v}) = A \vec{v}$ and $[T_A] = A$.

(a) **Prove:** A and A^{\top} have exactly the same eigenvalues.

Hint: you may wish to prove first that they have the same characteristic polynomials.

(b) **Prove:** Suppose that A is invertible. Then $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of the inverse A^{-1} .

Hint: As part of your proof, explain why the expression λ^{-1} makes sense (hint: use that A is invertible).

(c) **Prove:** Eigenspaces are **invariant** under T. That is, show that if λ is an eigenvalue of A, then

 $T_A(\operatorname{Eig}(A,\lambda)) \subseteq \operatorname{Eig}(A,\lambda).$

Hint: this is really short.