Activity 1: Definitions

Write the precise definitions of the following terms: Let $A \in \mathbb{M}_{n \times n}$.
(a) eigenvalue, eigenvector, and eigenspace for a matrix A.
(b) characteristic polynomial and the characteristic equation for A.
(c) A is diagonalizable.
(d) algebraic multiplicity and geometric multiplicity.

Activity 2: Computation

Let

$$
A=\left[\begin{array}{cccc}
7 & 0 & 0 & 0 \\
15 & -3 & 0 & 0 \\
6 & -4 & 7 & 0 \\
21 & -14 & 35 & -3
\end{array}\right]
$$

(a) Find the characteristic polynomial $p_{A}(\lambda)$.
(b) Find the eigenvalues.
(c) Find a basis for each eigenspace.
(d) What is the dimension of each eigenspace?
(e) Determine whether or not the algebraic multiplicity equals the geometric multiplicity for each eigenspace.
(f) Find C and D so that $A=C D C^{-1}$, if possible. Arrange D so that the eigenvalues are increasing.
(g) Compute: A^{4} without using technology (sci calc is ok, just no SAGEMath). Show work!

Activity 3: Computation

(a) Show that $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not diagonalizable.
(b) Which of the following matrices are diagonalizable, and why?
A. $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
D. $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$

Activity 4: Proofs

Let $A \in \mathbb{M}_{n \times n}$. Let $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear transformation associated to A, i.e. $T_{A}(\vec{v})=A \vec{v}$ and $\left[T_{A}\right]=A$.
(a) Prove: A and A^{\top} have exactly the same eigenvalues.

Hint: you may wish to prove first that they have the same characteristic polynomials.
(b) Prove: Suppose that A is invertible. Then $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of the inverse A^{-1}.
Hint: As part of your proof, explain why the expression λ^{-1} makes sense (hint: use that A is invertible).
(c) Prove: Eigenspaces are invariant under T. That is, show that if λ is an eigenvalue of A, then

$$
T_{A}(\operatorname{Eig}(A, \lambda)) \subseteq \operatorname{Eig}(A, \lambda)
$$

Hint: this is really short.

