
Chapter Zero
The Language of Mathematics:

Sets, Axioms, Theorems & Proofs

Mathematics is a language, and Logic is its grammar.
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Part I: Set Theory and Basic Logic

Definition: A set is an unordered collection of objects, called the
elements of the set. A set can be described using the set-builder
notation:

X  x | x possesses certain determinable qualities ,

or the roster method:

X  a, b, . . . ,

where we explicitly list the elements of X. The bar symbol “|” in
set-builder notation represents the phrase “such that.”

There is also a special set, called the empty set or the null-set, that
does not contain any elements:

 or  .
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Important Sets of Numbers:

  0, 1, 2, . . . .

  . . .3,2,1, 0, 1, 2, 3, . . . .

  a
b

| a and b are integers, with b  0 .

 
.

21 3 4 0
..

e .

The Real Number Line 
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Logical Statements and Axioms

Definition: A logical statement is a complete sentence that is
either true or false.

Which of the following are logical statements? (and if the
statement is logical, is it true or false?)

The square of a real number is never negative.

The set of natural numbers has a smallest element.

The set of integers has a smallest element.

Geometry is more important than Algebra.
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Definition: An Axiom is a logical statement that we will accept as
true, that is as reasonable human beings, we can mutually agree
that such Axioms are true.

The empty set  exists.

Euclidean Geometry:

existence of points

through two distinct points there must exist a unique line.

any three non-collinear points determine a unique triangle.
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Quantifiers

Definitions — Quantifiers:
There are two kinds of quantifiers: universal quantifiers and
existential quantifiers. Examples of universal quantifiers are the
words any, all and every, symbolized by:



They are often used in a logical statement to describe all
members of a certain set. Examples of existential quantifiers are
the phrases there is and there exists or their plural forms there are
and there exist, symbolized by:



Existential quantifiers are often used to claim the existence (or
non-existence) of a special element or elements of a certain set.
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The Axioms for the Real Numbers

Axioms — The Field Axioms for the Set of Real Numbers:
There exists a set of Real Numbers, denoted , together with two
binary operations:

 (addition) and  (multiplication).

Furthermore, the members of  enjoy the following properties:

1. The Closure Property of Addition:

For all x, y  : x  y   as well.

2. The Closure Property of Multiplication:

For all x, y  : x  y   as well.
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3. The Commutative Property of Addition

For all x, y  : x  y  y  x.

4. The Commutative Property of Multiplication

For all x, y  : x  y  y  x.

5. The Associative Property of Addition

For all x, y, z  : x  y  z  x  y  z.

6. The Associative Property of Multiplication

For all x, y, z  : x  y  z  x  y  z.
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7. The Distributive Property of Multiplication over Addition

For all x, y, z  : x  y  z  x  y  x  z.

8. The Existence of the Additive Identity:

There exists 0   such that for all x  :

x  0  x  0  x.

9. The Existence of the Multiplicative Identity:

There exists 1  , 1  0, such that for all x  :

x  1  x  1  x.

10. The Existence of Additive Inverses:

For all x  , there exists  x  , such that:

x  x  0  x  x.

11. The Existence of Multiplicative Inverses:

For all x  , where x  0, there exists 1/x  ,

such that: x  1/x  1  1/x  x.
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Theorems and Implications

Definitions: A true logical statement which is not just an Axiom
is called a Theorem. Many of the Theorems that we will
encounter in Linear Algebra are called implications, and they are
of the form:

if p then q,

which can also be written symbolically as:

p  q (pronounced as: p implies q.
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An implication p  q is true if the statement q is true whenever
we know that the statement p is also true.

The statements p and q are called conditions.

p — the hypothesis (or antecedent or the given conditions)

q — the conclusion or the consequent.

If such an implication is true, we say:

condition p is sufficient for condition q, and

condition q is necessary for condition p.
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True or False?

If f x is differentiable at x  a,
then f x is also continuous at x  a.

If p is a prime number, then 2p  1 is also a prime number.
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In fact, it turns out that the integers of the form 2p  1 where p is
a prime number are rarely prime, and we call such prime
numbers Mersenne primes.

As of May 2016, there are only 49 known Mersenne Primes, and
the largest of these is:

274,207,281  1

This is also the largest known prime number.

If this number were expressed in the usual decimal form, it will
be 22,338,618 digits long.

Large prime numbers have important applications in
cryptography, a field of mathematics which allows us to safely
provide personal information such as credit card numbers on the
internet.
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Negations

Definition: The negation of the logical statement p is written
symbolically as:

not p.

True or False?

An integer is not a rational number.

The function gx  1/x is not continuous at x  0.
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Converse, Inverse, Contrapositive

Definition: For the implication p  q, we call:

q  p the converse of p  q,

not p  not q the inverse of p  q, and

not q  not p the contrapositive of p  q.
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Example:

Complete the following Theorem about Infinite Series:

Theorem: If 
n0


an converges, then an 

Now let us write its:

Converse:

Inverse:

Contrapositive:

Do you recognize the contrapositive?
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Logical Equivalence

If we know that p  q and q  p are both true, then we say
that the conditions p and q are logically equivalent to each other,
and we write the equivalence or double-implication:

p  q (pronounced as: p if and only if q).

An implication is always logically equivalent to its contrapositive
(as proven in Appendix B):

p  q  notq  not p.

An equivalence is again equivalent to its contrapositive:

p  q  not p  notq.
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Logical Operations

Definition: If p and q are two logical statements, we can form
their conjunction:

p and q,

and their disjunction:

p or q.

The conjunction p and q is true precisely if both conditions p
and q are true.

The disjunction p or q is true precisely if either condition p or q
is true (or possibly both are true).
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Examples:

True or False?

f x  sinx is positive and monotonic increasing on the
interval 0,.

Every real number is either rational or irrational.
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De Morgan’s Laws

Theorem — De Morgan’s Laws: For all logical statements p and
q:

not p and q is logically equivalent to not p or not q,
and likewise:

not p or q is logically equivalent to not p and not q.
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Subsets and Set Operations

Definition: We say that a set X is a subset of another set Y if
every member of X is also a member of Y. We write this
symbolically as:

X  Y.

If X is a subset of Y, we can also say that X is contained in Y, or
Y contains X. We can visualize sets and subsets using Venn
diagrams as follows:

 Y

X

.

.
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We say X equals Y if and only if X is a subset of Y and Y is a
subset of X :

X  Y  X  Y and Y  X .

Equivalently, every member of X is also a member of Y, and
every member of Y is also a member of X :

X  Y  x  X  x  Y and y  Y  y  X .
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We combine two sets into a single set that contains precisely all
the members of the two sets using the union operation:

X  Y  z | z  X or z  Y .

We determine all members common to both sets using the
intersection operation:

X  Y  z | z  X and z  Y .

We can also take the difference or complement of two sets:

X  Y  z | z  X and z  Y .
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A  B

.

A  B

A 

B

 
A  B

B  AB

A

.

.
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Example:

A  b, e, f, h

B  a, b, d, e, f, g, h, k

C  a, b, c, e, k

D  b, e, f, k, n

Is A  B?

C  D 

C  D 

C  D 

D  C 
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Part II: Proofs

Definition: A proof for a Theorem is a sequence of true logical
statements which convincingly and completely explains why a
Theorem is true.

The Glue that Holds a Proof Together — Modus Ponens

Suppose you already know that an implication p  q is true.

Suppose you also established that condition p is satisfied.

Therefore, it is logical to conclude that

condition q is also satisfied.
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Example: Let us demonstrate modus ponens on the following
logical argument:

In Calculus, we proved that if f x is an odd function on a, a,
then 

a

a f xdx  0.

The function f x  x7 cos3x is an odd function on ,,
since:

Therefore:
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Basic Tips to Write Proofs

understanding the meaning of the given conditions and the
conclusion

state the definitions of a variety of words and phrases involved

be familiar with special symbols and notation

a previously proven Theorem can also be helpful to prove
another Theorem

identify what is given (the hypotheses), and what it is that we
want to show (the conclusion)

emulate examples from the book and from lecture as you learn
and develop your own style
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We often use unconsciously:

Axiom — The Substitution Principle:
If x  y and F x is an arithmetic expression involving x, then
F  x  F  y.
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A Proof Based only on Axioms

Theorem — The Multiplicative Property of Zero: For all
a   :

0  a  0  a  0.
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Case-by-Case Analysis

Theorem — The Zero-Factors Theorem: For all a, b   :
a  b  0 if and only if either a  0 or b  0.
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Proof by Contrapositive

We will need for the next Example:

Axioms — Closure Axioms for the Set of Integers:
If a, b  , then a  b  , a  b  , and a  b   as well.

Definitions — Even and Odd Integers:
An integer a   is even if there exists c   such that a  2c.
An integer b   is odd if there exists d   such that
a  2d  1.
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Let us now prove the following:

Theorem: For all a, b  :

If the product a  b is odd, then both a and b are odd.

Contrapositive is:
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Proof by Contradiction

Known formally as: reductio ad absurdum

often used in order to show that an object does not exist, or in
situations when it is difficult to show that an implication is true
directly

assume that the mythical object does exist, or more generally, the
opposite of the conclusion is true.

arrive at a condition which contradicts one of the given
conditions, or a condition which has already been concluded to
be true (thus producing an absurdity or contradiction).

not guaranteed to work :(

Theorem: The real number 2 is irrational.
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Proof by Induction

Theorem: For all positive integers n :
1

1  2  1
2  3   1

n  n  1  n
n  1 .
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Conjectures and Demonstrations

Many statements in mathematics have not been determined to be
true or false.

They are called conjectures.

We can try to demonstrate that it is plausible for the conjecture
to be true by giving examples.

These demonstrations are not replacements for a complete proof.

Goldbach’s Conjecture: Every even integer bigger than 2 can be
expressed as the sum of two prime numbers.
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