Chapter 1

The Canvas of Linear Algebra:

Euclidean Spaces and Subspaces

1.1 The Main Subject: Euclidean Spaces

Definition: An *ordered n* – *tuple* or *vector* is an ordered list of *n* real numbers:

$$\vec{v} = \langle v_1, v_2, \ldots, v_n \rangle.$$

Definition: The set of all possible n - tuples is called **Euclidean** n - space, denoted by the symbol \mathbb{R}^n :

$$\mathbb{R}^n = \{ \vec{v} = \langle v_1, v_2, \dots, v_n \rangle \mid v_1, v_2, \dots, v_n \in \mathbb{R} \}.$$

To distinguish real numbers from vectors, we will also refer to real numbers as *scalars*.

Definition: Two vectors $\vec{u} = \langle u_1, u_2, ..., u_n \rangle$ and $\vec{v} = \langle v_1, v_2, ..., v_n \rangle$ from \mathbb{R}^n are **equal** if all of their components are pairwise equal, that is, $u_i = v_i$ for i = 1...n. Two vectors from **different** Euclidean spaces are **never** equal.

Definitions: Each \mathbb{R}^n has a special element called the *zero vector*, all of whose components are zero: $\vec{0}_n = \langle 0, 0, ..., 0 \rangle$. Every vector $\vec{v} = \langle v_1, v_2, ..., v_n \rangle \in \mathbb{R}^n$ has its own *additive*

inverse, also known as its *negative*:

$$-\overrightarrow{v}=\langle -v_1,-v_2,\ldots,-v_n\rangle.$$

Vector Arithmetic

Definitions: If $\vec{u} = \langle u_1, u_2, ..., u_n \rangle$ and $\vec{v} = \langle v_1, v_2, ..., v_n \rangle$ are vectors in \mathbb{R}^n , we define the **vector sum**:

$$\vec{u}+\vec{v}=\langle u_1+v_1,\,u_2+v_2,\,\ldots,\,u_n+v_n\rangle,$$

and if $r \in \mathbb{R}$, we define the *scalar product*:

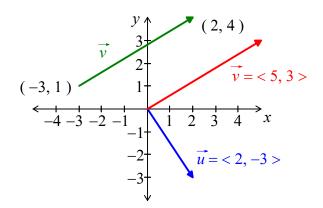
$$r \cdot \vec{v} = \vec{rv} = \langle rv_1, rv_2, \dots, rv_n \rangle.$$

We will call the operation of finding the vector sum as *vector addition*, and the operation of finding a scalar product as *scalar multiplication*. We can also define *vector subtraction* by:

$$\vec{u}-\vec{v}=\vec{u}+(-\vec{v})=\langle u_1-v_1, u_2-v_2, \ldots, u_n-v_n\rangle.$$

Theorem: The Multiplicative Property of the Scalar Zero: Let $\vec{v} = \langle v_1, v_2, ..., v_n \rangle \in \mathbb{R}^n$. Then: $0 \cdot \vec{v} = \vec{0}_n$.

Visualizing Vectors from \mathbb{R}^2



Plotting Vectors in \mathbb{R}^2

Translating Vectors in \mathbb{R}^2

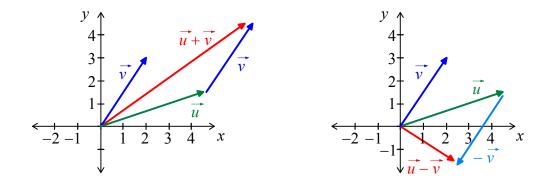
Theorem: Let $\vec{u} = \langle u_1, u_2 \rangle \in \mathbb{R}^2$, and $P(a_1, b_1)$ a point on the Cartesian plane. If \vec{u} is translated to P, then then head of \vec{u} will be located at $Q(a_2, b_2)$, where:

$$a_2 = a_1 + u_1$$
, and $b_2 = b_1 + u_2$.

Conversely, if $P(a_1, b_1)$ and $Q(a_2, b_2)$ are two points on the Cartesian plane, then the vector $\vec{u} \in \mathbb{R}^2$ from P to Q is:

$$\vec{u} = \overrightarrow{PQ} = \langle a_2 - a_1, b_2 - b_1 \rangle.$$

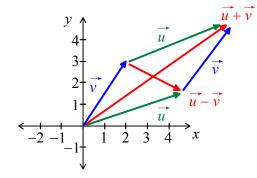
The Geometry of Vector Arithmetic in \mathbb{R}^2

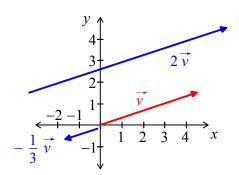


Vector Addition and Subtraction in \mathbb{R}^2

The Parallelogram Principle;

Scalar Multiplication





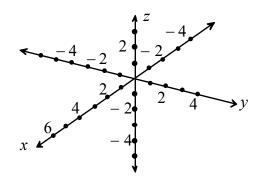
Definition: Axiom for Parallel Vectors:

We say that two vectors \vec{u} , $\vec{v} \in \mathbb{R}^n$ are *parallel to each other* if there exists either $a \in \mathbb{R}$ or $b \in \mathbb{R}$ such that:

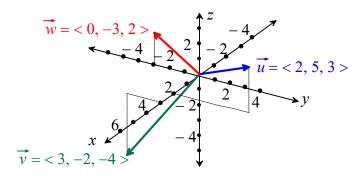
$$\vec{u} = a \cdot \vec{v}$$
 or $\vec{v} = b \cdot \vec{u}$.

Consequently, this means that $\vec{\mathbf{0}}_n$ is parallel to **all** vectors $\vec{v} \in \mathbb{R}^n$, since $\vec{\mathbf{0}}_n = 0 \cdot \vec{v}$.

Visualizing Vectors from \mathbb{R}^3



Cartesian Space



Plotting Vectors from \mathbb{R}^3

Translating Vectors in \mathbb{R}^3

Theorem: Let $\vec{u} = \langle u_1, u_2, u_3 \rangle \in \mathbb{R}^3$, and $P(a_1, b_1, c_1)$ a point in Cartesian space. If \vec{u} is translated to P, then then head of \vec{u} will be located at $Q(a_2, b_2, c_2)$, where:

$$a_2 = a_1 + u_1$$
, $b_2 = b_1 + u_2$, and $c_2 = c_1 + u_3$.

Conversely, let $P(a_1, b_1, c_1)$ and $Q(a_2, b_2, c_2)$ be two points in Cartesian space. Then the vector $\vec{u} \in \mathbb{R}^3$ from P to Q is:

$$\vec{u} = \overrightarrow{PQ} = \langle a_2 - a_1, b_2 - b_1, c_2 - c_1 \rangle.$$

Properties of Vector Arithmetic

Theorem — Properties of Vector Arithmetic:

If \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^n and r and s are scalars, then the following properties are true:

1. The Closure Property of Vector Addition

 $\vec{u} + \vec{v}$ is also in \mathbb{R}^n .

- 2. The Closure Property of Scalar Multiplication $r\vec{u}$ is also in \mathbb{R}^n .
- 3. The Commutative Property of Vector Addition $\vec{u} + \vec{v} = \vec{v} + \vec{u}.$
- 4. The Associative Property of Vector Addition $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}).$
- 5. The Additive Identity Property $\vec{0}_n + \vec{v} = \vec{v} = \vec{v} + \vec{0}_n.$

- 6. The Additive Inverse Property $\vec{v} + (-\vec{v}) = \vec{0}_n = (-\vec{v}) + \vec{v}.$
- 7. The "Left" Distributive Property $(r+s)\vec{v} = r\vec{v} + s\vec{v}.$
- 8. The "Right" Distributive Property $r(\vec{u} + \vec{v}) = r\vec{u} + r\vec{v}.$
- 9. The Associative Property of Scalar Multiplication

$$(rs)\vec{v} = r(s\vec{v}) = s(r\vec{v}).$$

10. The Unitary Property of Scalar Multiplication $1\vec{v} = \vec{v}.$

The Length of a Vector:

Definition: Let $\vec{v} = \langle v_1, v_2 \rangle \in \mathbb{R}^2$ and $\vec{w} = \langle w_1, w_2, w_3 \rangle \in \mathbb{R}^3$. We define the *length* or *norm* or *magnitude* of these vectors as:

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2}$$
 and $\|\vec{w}\| = \sqrt{w_1^2 + w_2^2 + w_3^2}$

We say that \vec{v} is a *unit vector* if $\|\vec{v}\| = 1$. Similarly, \vec{w} is a unit vector if $\|\vec{w}\| = 1$.

Theorem: For any scalar $k \in \mathbb{R}$ and vector $\vec{v} \in \mathbb{R}^2$ or \mathbb{R}^3 : $\|k\vec{v}\| = |k| \|\vec{v}\|$. Furthermore, $\|\vec{v}\| \ge 0$, and $\|\vec{v}\| = 0$ *if and only if* $\vec{v} = \vec{0}_2$ or $\vec{0}_3$. Consequently, if \vec{v} is a non-zero vector, then: $\vec{u}_1 = \frac{1}{\|\vec{v}\|}\vec{v}$ and $\vec{u}_2 = \frac{-1}{\|\vec{v}\|}\vec{v}$

are *unit vectors* parallel to \vec{v} .

Linear Combinations

Definition: If \vec{v}_1 , \vec{v}_2 , ..., $\vec{v}_k \in \mathbb{R}^n$, and x_1 , x_2 , ..., $x_k \in \mathbb{R}$, then the vector expression:

$$x_1\vec{v}_1 + x_2\vec{v}_2 + \cdots + x_k\vec{v}_k$$

is called a *linear combination* of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ with *coefficients* x_1, x_2, \ldots, x_k .

Example: If $\vec{u} = \langle 5, -2, 3, -7 \rangle, \vec{v} = \langle -4, 2, 3, -6 \rangle$ and $\vec{w} = \langle 3, 0, -8, 3 \rangle$, then: $5\vec{u} - 3\vec{v} + 6\vec{w} =$

Example: If $\vec{u} = \langle 5, -2, 4, 6 \rangle$ and $\vec{v} = \langle 1, -5, 2, -3 \rangle$, is it possible to express $\langle 11, 37, -2, 51 \rangle$ as a linear combination of \vec{u} and \vec{v} ?

The Standard Basis Vectors

Definition: The standard basis vectors in \mathbb{R}^n are the vectors \vec{e}_1 , \vec{e}_2 , ..., \vec{e}_n that have 0 in all components except the i^{th} component, which contains 1 :

$$\vec{e}_i = \langle 0, 0, \dots, 0, 1, 0, \dots, 0 \rangle.$$

The Standard Basis Vectors of \mathbb{R}^2 and \mathbb{R}^3

Theorem: Every vector $\vec{x} = \langle x_1, x_2, ..., x_n \rangle \in \mathbb{R}^n$ can be expressed **uniquely** as a linear combination of the standard basis vectors:

 $\langle x_1, x_2, \ldots, x_n \rangle = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \cdots + x_n \vec{e}_n.$

The Proof Template

Write the Theorem you are trying to prove, in its entirety.

Paraphrase the Theorem by identifying the *given conditions* and the *conclusion:*

We are given that:

The conclusion we want to reach is: or

We want to show that:

Write down the relevant Definitions:

The given conditions mean that:

The conclusions we want to reach mean that:

The notations in the Theorem mean:

Write down any relevant *Theorems* that are related to the given conditions or to the conclusion and try to connect everything in your template together in a complete proof.

Use the words and phrases:

let, consider, assume, suppose,

if, if and only if,

thus, therefore, this implies, we can conclude that, but, however,

we know that, our goal is to show that, according to this Theorem, we get a contradiction, let us form the contrapositive, conversely . . . etc.

Practice!