1.2 The Span of a Set of Vectors

Definition: The **Span** of a non-empty set of vectors $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_k}$ from \mathbb{R}^n is the set of **all possible linear combinations** of the vectors in the set. We write:

$$Span(S) = Span(\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\})$$
$$= \{x_1 \vec{v}_1 + x_2 \vec{v}_2 + \dots + x_k \vec{v}_k \mid x_1, x_2, \dots, x_k \in \mathbb{R}\}.$$

We note that the individual vectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ are all members of Span(S), where we let $x_i = 1$ and all the other coefficients 0 in order to produce \vec{v}_i . Similarly, the zero vector $\vec{0}_n$ is also a member of Span(S), where we make all the coefficients x_i zero to produce $\vec{0}_n$.

Theorem: In any \mathbb{R}^n : $Span\left(\left\{\vec{0}_n\right\}\right) = \left\{\vec{0}_n\right\}.$

Theorem: For all
$$\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k \in \mathbb{R}^n$$
:

$$Span\left(\left\{\vec{0}_n, \vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\right\}\right)$$

$$= Span(\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}).$$

Theorem: $\mathbb{R}^n = Span(\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}).$

The Span of One Vector in \mathbb{R}^2

Example: Suppose that $\vec{v} = \langle 5, 3 \rangle \in \mathbb{R}^2$.

Describe $Span({\vec{v}})$.

The Span of One Vector in \mathbb{R}^3

Example: Suppose that $\vec{w} = \langle -2, 1, -4 \rangle \in \mathbb{R}^3$. Describe $Span(\{\vec{v}\})$

Lines in \mathbb{R}^n

Definition — Axiom for a Line:

If $\vec{v} \in \mathbb{R}^n$ is a *non-zero* vector, then $Span(\{\vec{v}\})$ is geometrically a *line* L in \mathbb{R}^n passing through the origin.

The Span of Two Parallel Vectors

Example: Suppose that $\vec{v} = \langle -15, 10 \rangle$ and $\vec{w} = \langle 12, -8 \rangle \in \mathbb{R}^2$. Describe *Span*($\{\vec{u}, \vec{v}\}$).

Theorem: If \vec{u} and \vec{v} are non-zero vectors in some \mathbb{R}^n which are parallel to each other, then:

 $Span(\{\vec{u}, \vec{v}\}) = Span(\{\vec{v}\}) = Span(\{\vec{u}\}).$

The Span of Two

Non-Parallel Vectors in \mathbb{R}^2

Example: Describe *Span*($\{\langle 5, 3 \rangle, \langle -1, 2 \rangle\}$) in \mathbb{R}^2 .

In general:

Theorem: If $\vec{u}, \vec{v} \in \mathbb{R}^2$ are **non-parallel** vectors, then: $Span(\{\vec{u}, \vec{v}\}) = \mathbb{R}^2$. In other words, **any vector** $\vec{w} \in \mathbb{R}^2$ can be expressed as a linear

$$\vec{w} = r\vec{u} + s\vec{v},$$

for some scalars *r* and *s*.

The Span of Two

Non-Parallel Vectors in \mathbb{R}^3

Definition — Axiom for a Plane in Cartesian Space:

If \vec{u} and \vec{v} are vectors in \mathbb{R}^3 that are *not parallel* to each other, then $Span(\{\vec{u}, \vec{v}\})$ is geometrically a *plane* Π in Cartesian space that passes through the origin (Π is the capital form of the lowercase Greek letter π).

 $Span(\{\vec{u},\vec{v}\}) = \Pi$

Example: Span($\{\langle -2, 1, -3 \rangle, \langle 5, 4, -3 \rangle\}$).

The Cartesian Equation of a Plane

Definition: The **Cartesian equation** of a plane through the **origin** in Cartesian space, given in the form $\Pi = Span(\{\vec{u}, \vec{v}\})$, where \vec{u} and \vec{v} are not parallel, has the form:

$$ax+by+cz=0,$$

for some constants, *a*, *b* and *c*, where at least one coefficient is non-zero.

Translation of a Span

$$Q = \{ \vec{q} + \vec{v} | \vec{v} \in Span(S) \},\$$

for some *fixed* non-zero vector $\vec{q} \in \mathbb{R}^n$.

General Lines in \mathbb{R}^n

Definitions: A line L in \mathbb{R}^n is the translate of the Span of a single **non-zero** vector $\vec{d} \in \mathbb{R}^n$:

$$L = \left\{ \vec{x}_p + \vec{td} \, \big| \, t \in \mathbb{R} \right\},\,$$

for some vector $\vec{x}_p \in \mathbb{R}^n$. We may think of d as a *direction vector* of *L*, and any non-zero multiple of \vec{d} can also be used as a direction vector for *L*.

We see that by setting t to zero that \vec{x}_p is a *particular* vector on the line L. We will also say that two *distinct* lines are *parallel* to each other if they are different translates of the same line through the origin.

General Lines in \mathbb{R}^3

Example: Consider the line *L* in Cartesian space passing through the point (-5, 2, -3) and pointing in the direction of $\langle 2, 4, -7 \rangle$.

Definition: A line *L* in Cartesian space passing through the point (x_0, y_0, z_0) , and with non-zero direction vector $\vec{d} = \langle a, b, c \rangle$ can be specified using a *vector equation*, in the form:

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$$
, where $t \in \mathbb{R}$.

If *none* of the components of d are zero, we can obtain *symmetric equations* for L, of the form:

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}.$$

General Planes in \mathbb{R}^n

Definition: A **plane** Π in \mathbb{R}^n is the translate of a Span of two **non-parallel** vectors \vec{u} and $\vec{v} \in \mathbb{R}^n$:

$$\Pi = \{ \vec{x} = \vec{x}_p + r\vec{u} + \vec{sv} \mid r, s \in \mathbb{R} \},\$$

for some $\vec{x}_p \in \mathbb{R}^n$.

Some creative ways to specify a plane in Cartesian space:

- requiring the plane to contain three non-collinear points.
- requiring the plane to contain two intersecting lines.
- requiring the plane to contain two parallel lines.

Example: Find parametric equations and a Cartesian equation for the plane Π passing through A(1,-3,2), B(-1,-2,1) and C(2,3,-1).

Definition: A plane П in Cartesian space can be specified using a *Cartesian equation*, in the form:

$$ax + by + cz = d$$
,

for some constants, a, b, c and d, where either a or b or c is non-zero. It is not unique, because we can multiply all the coefficients in the equation by the same non-zero constant k, and the resulting equation will again be a Cartesian equation for Π . The plane passes through the origin *if and only if* d = 0.

The Span of Three Non-Coplanar Vectors

Theorem: If \vec{u} , \vec{v} and \vec{w} are **non-coplanar** vectors in \mathbb{R}^3 , that is, none of these vectors is on the plane determined by the two others, then:

$$Span(\{\vec{u}, \vec{v}, \vec{w}\}) = \mathbb{R}^3.$$

In other words, any vector $\vec{z} \in \mathbb{R}^3$ can be expressed as a linear combination, $\vec{z} = r\vec{u} + s\vec{v} + t\vec{w}$, for some scalars *r*, *s* and *t*.

If \vec{u} , \vec{v} and \vec{w} Are *Non-Coplanar* Vectors in \mathbb{R}^3 , Then $Span(\{\vec{u}, \vec{v}, \vec{w}\}) = \mathbb{R}^3$