
1.2 The Span of a Set of Vectors

Definition: The Span of a non-empty set of vectors
S  v1, v2, . . . , vk from n is the set of all possible linear
combinations of the vectors in the set. We write:

SpanS  Spanv1, v2, . . . , vk

 x1v1  x2v2   xkvk |

x1, x2, . . . , xk  .

We note that the individual vectors v1, v2, . . . , vk are all
members of SpanS, where we let x i  1 and all the other
coefficients 0 in order to produce vi. Similarly, the zero vector
0 n is also a member of SpanS, where we make all the
coefficients x i zero to produce 0 n.
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Theorem: In any n : Span 0 n  0 n .

Theorem: For all v1, v2, . . . , vk  n :

Span 0 n, v1, v2, . . . , vk

 Spanv1, v2, . . . , vk.

Theorem: n  Spane1, e2,  , en.
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The Span of One Vector in 2

Example: Suppose that v  5, 3  2.

Describe Spanv.
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The Span of One Vector in 3

Example: Suppose that w  2, 1,4  3. Describe
Spanv
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Lines in n

Definition — Axiom for a Line:
If v  n is a non-zero vector, then Spanv is geometrically a
line L in n passing through the origin.
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The Span of Two Parallel Vectors

Example: Suppose that v  15, 10 and w  12,8  2.
Describe Spanu, v.
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Theorem: If u and v are non-zero vectors in some n which are
parallel to each other, then:

Spanu, v  Spanv  Spanu .
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The Span of Two

Non-Parallel Vectors in 2

Example: Describe Span5, 3, 1, 2 in 2.
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In general:

Theorem: If u, v  2 are non-parallel vectors, then:

Spanu, v  2.
In other words, any vector w  2 can be expressed as a linear
combination:

w  ru  sv,
for some scalars r and s.
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The Span of Two

Non-Parallel Vectors in 3

Definition — Axiom for a Plane in Cartesian Space:
If u and v are vectors in 3 that are not parallel to each other,
then Spanu, v is geometrically a plane  in Cartesian space
that passes through the origin ( is the capital form of the
lowercase Greek letter ).
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Span  u, v 

Spanu, v  

Example: Span 2, 1,3, 5, 4,3.
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The Cartesian Equation of a Plane

Definition: The Cartesian equation of a plane through the
origin in Cartesian space, given in the form   Spanu, v,
where u and v are not parallel, has the form:

ax  by  cz  0,

for some constants, a, b and c, where at least one coefficient is
non-zero.
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Translation of a Span

Q  q  v| v  SpanS ,

for some fixed non-zero vector q  n.
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General Lines in n

Definitions: A line L in n is the translate of the Span of a single
non-zero vector d  n :

L  xp  td | t   ,

for some vector xp  n. We may think of d as a direction vector
of L, and any non-zero multiple of d can also be used as a
direction vector for L.
We see that by setting t to zero that xp is a particular vector on
the line L. We will also say that two distinct lines are parallel to
each other if they are different translates of the same line through
the origin.
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General Lines in 3

Example: Consider the line L in Cartesian space passing through
the point 5, 2,3 and pointing in the direction of 2, 4,7.
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Definition: A line L in Cartesian space passing through the point
 x0, y0, z0 , and with non-zero direction vector d  a, b, c can
be specified using a vector equation, in the form:

 x, y, z   x0, y0, z0   ta, b, c, where t  .

If none of the components of d are zero, we can obtain symmetric
equations for L, of the form:

x  x0
a 

y  y0

b
 z  z0

c .
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General Planes in n

Definition: A plane  in n is the translate of a Span of two
non-parallel vectors u and v  n :

  x  xp  ru  sv | r, s   ,

for some xp  n.
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Some creative ways to specify a plane in Cartesian space:

 requiring the plane to contain three non-collinear points.

 requiring the plane to contain two intersecting lines.

 requiring the plane to contain two parallel lines.

Example: Find parametric equations and a Cartesian equation for
the plane  passing through A1,3, 2, B1,2, 1 and
C2, 3,1.
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Definition: A plane  in Cartesian space can be specified using a
Cartesian equation, in the form:

ax  by  cz  d,

for some constants, a, b, c and d, where either a or b or c is
non-zero. It is not unique, because we can multiply all the
coefficients in the equation by the same non-zero constant k, and
the resulting equation will again be a Cartesian equation for .
The plane passes through the origin if and only if d  0.
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The Span of Three Non-Coplanar Vectors

Theorem: If u, v and w are non-coplanar vectors in 3, that is,
none of these vectors is on the plane determined by the two
others, then:

Spanu, v, w   3.

In other words, any vector z  3 can be expressed as a linear
combination, z  ru  sv  tw, for some scalars r, s and t.
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If u, v and w Are Non-Coplanar Vectors in 3,

Then Spanu, v, w   3
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