1.3 The Dot Product and Orthogonality

Definition: If $\vec{u} = \langle u_1, u_2, ..., u_n \rangle$ and $\vec{v} = \langle v_1, v_2, ..., v_n \rangle$ are vectors from \mathbb{R}^n , we define their **dot product**:

 $\vec{u} \circ \vec{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$

Example: If $\vec{u} = \langle 4, -3, -6, 5, -2 \rangle$ and $\vec{v} = \langle 3, -5, 4, -7, -1 \rangle$, then:

 $\vec{u} \circ \vec{v} =$

Length of a Vector

Definitions: We define the *length* or *norm* or *magnitude* of a vector $\vec{v} = \langle v_1, v_2, ..., v_n \rangle \in \mathbb{R}^n$ as the non-negative number:

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

It follows directly from the definition of the dot product that:

 $\|\vec{v}\|^2 = \vec{v} \circ \vec{v}$, or in other words, $\|\vec{v}\| = \sqrt{\vec{v} \circ \vec{v}}$.

A vector with length 1 is called a *unit vector*.

Theorem: For any vector $\vec{v} \in \mathbb{R}^n$ and $k \in \mathbb{R}$: $||k\vec{v}|| = |k|||\vec{v}||$. In particular, if $\vec{v} \neq \vec{0}_n$, then $\vec{u}_1 = \frac{1}{||\vec{v}||}\vec{v}$ is the unit vector in the same direction as \vec{v} , and $\vec{u}_2 = -\frac{1}{||\vec{v}||}\vec{v}$ is the unit vector in the opposite direction as \vec{v} . Furthermore:

$$\|\vec{v}\| = 0$$
 if and only if $\vec{v} = \vec{0}_n$.

Example: The vector $\vec{v} = \langle 3, -2, 5, -4, -8 \rangle$ has length:

 $\|\vec{v}\| =$

The two unit vectors parallel to \vec{v} are:

Properties of the Dot Product

Theorem — Properties of the Dot Product: For any vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ and scalar $k \in \mathbb{R}$, we have: 1. The Commutative Property $\vec{u} \circ \vec{v} = \vec{v} \circ \vec{u}$ 2. The Right Distributive Property $\vec{u} \circ (\vec{v} + \vec{w}) = \vec{u} \circ \vec{v} + \vec{u} \circ \vec{w}.$ 3. The Left Distributive Property $(\vec{u} + \vec{v}) \circ \vec{w} = \vec{u} \circ \vec{w} + \vec{v} \circ \vec{w}.$ 4. The Homogeneity Property $(k \cdot \vec{u}) \circ \vec{v} = k(\vec{u} \circ \vec{v}) = \vec{u} \circ (k \cdot \vec{v}).$ 5. The Zero-Vector Property $\vec{u} \circ \vec{0}_n = 0.$ 6. The Positivity Property If $\vec{u} \neq \vec{0}_n$, then $\vec{u} \circ \vec{u} > 0$.

The last two properties can be combined into one:

7. The Non-Degeneracy Property $\vec{u} \circ \vec{u} > 0$ if and only if $\vec{u} \neq \vec{0}_n$, and $\vec{0}_n \circ \vec{0}_n = 0$. *Example:* Suppose we are told that \vec{u} and \vec{v} are two vectors from some \mathbb{R}^n (which \mathbb{R}^n is not really important). Suppose we were provided the information that $\|\vec{u}\| = 3$, $\|\vec{v}\| = 7$, and $\vec{u} \circ \vec{v} = 16$. Find $\|4\vec{u} - 9\vec{v}\|$.

A Geometric Formulation for the Dot Product

The Law of Cosines:

 $c^2 = a^2 + b^2 - 2ab\cos(\theta)$

The Triangle Formed by \vec{v} , $\vec{u} - \vec{v}$ and \vec{u}

Definition/Theorem: If \vec{u} and \vec{v} are **non-zero** vectors in \mathbb{R}^2 , then:

 $\vec{u} \circ \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos(\theta),$

where θ is the angle formed by the vectors \vec{u} and \vec{v} in standard position. Thus, we can *compute* the angle θ between \vec{u} and \vec{v} by:

$$\cos(\theta) = \frac{\vec{u} \circ \vec{v}}{\|\vec{u}\| \|\vec{v}\|},$$

where $0 \le \theta \le \pi$. We will use the exact same formula for two vectors in \mathbb{R}^3 .

Example: Let us consider the two vectors $\vec{u} = \langle 7, 4 \rangle$ and $\vec{v} = \langle -3, 2 \rangle$.

Orthogonality in \mathbb{R}^2 or \mathbb{R}^3

Definition/Theorem: Two vectors \vec{u} and $\vec{v} \in \mathbb{R}^2$ or \mathbb{R}^3 are **perpendicular** or **orthogonal** to each other **if and only if** $\vec{u} \circ \vec{v} = 0$.

Example: $\vec{u} = \langle 4, -2, 3 \rangle$ and $\vec{v} = \langle -3, 5, 7 \rangle$

Revisiting The Cartesian Equation of a Plane

An Arbitrary Plane in Cartesian Space

ax + by + cz = d.

The Cauchy-Schwarz Inequality

Theorem — The Cauchy-Schwarz Inequality: For any two vectors \vec{u} and $\vec{v} \in \mathbb{R}^n$: $|\vec{u} \circ \vec{v}| \le \|\vec{u}\| \|\vec{v}\|$.

Proof: We will separate the proof into two cases:

Case 1: Suppose $\vec{u} = \vec{0}_n$ or $\vec{v} = \vec{0}_n$. Then both sides are 0, so the inequality is true.

Case 2: Suppose now that $\vec{u} \neq \vec{0}_n$ and $\vec{v} \neq \vec{0}_n$.

The Triangle Inequality

Theorem — *The Triangle Inequality:* For any two vectors \vec{u} and $\vec{v} \in \mathbb{R}^n$: $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$.

The Triangle Inequality: $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$

Angles and Orthogonality

Definition: If \vec{u} , $\vec{v} \in \mathbb{R}^n$ are **non-zero** vectors, we define the **angle** θ between \vec{u} and \vec{v} by:

$$\cos(\theta) = \frac{\vec{u} \circ \vec{v}}{\|\vec{u}\| \|\vec{v}\|},$$

where $0 \le \theta \le \pi$. Furthermore, we will say that \vec{u} is *orthogonal* to \vec{v} if $\vec{u} \circ \vec{v} = 0$.

We will *agree* that the zero vector $\vec{0}_n$ is orthogonal to *all* vectors in \mathbb{R}^n .

Example: Find the angle θ between $\vec{u} = \langle 3, -7, 6, -4 \rangle$ and $\vec{v} = \langle 2, 1, -3, -2 \rangle$.

Distance Between Vectors

Definition: If $\vec{u} = \langle u_1, u_2, ..., u_n \rangle$ and $\vec{v} = \langle v_1, v_2, ..., v_n \rangle$ are vectors from \mathbb{R}^n , we define the *distance between* \vec{u} and \vec{v} as:

$$d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|$$

= $\sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}.$

The Distance Between Two Vectors \vec{u} and \vec{v}

Example: Let
$$\vec{u} = \langle 7, 3, -4, -2 \rangle$$
 and $\vec{v} = \langle -2, 0, 3, -4 \rangle$.

Theorem — Properties of Distances:

Let \vec{u} , \vec{v} , $\vec{w} \in \mathbb{R}^n$ and $k \in \mathbb{R}$. Then, we have the following properties:

1. The Symmetric Property for Distances

 $d(\vec{u},\vec{v})=d(\vec{v},\vec{u}).$

2. The Homogeneity Property for Distances

 $d(k\vec{u},k\vec{v}) = |k| \cdot d(\vec{u},\vec{v}).$

3. The Triangle Inequality for Distances $d(\vec{u}, \vec{w}) \leq d(\vec{u}, \vec{v}) + d(\vec{v}, \vec{w}).$

