
1.5 Linear Systems and Linear
Independence

Definition:

A linear system is called consistent if it has at least one solution.

A linear system is called inconsistent if it does not have any
solutions.
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Theorem: Let b  m and let S  v1, v2, . . . , vn  be a set of
vectors from m. Then b  SpanS if and only if the system
of equations corresponding to the augmented matrix:

A  v1 v2 . . . vn | b

is consistent.
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Definition: A linear system with m equations in n variables is
called:

1. square if m  n.

2. underdetermined if m  n.

3. overdetermined if m  n.
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Geometric Interpretation in 2 and 3
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Example: Let us investigate the system:

2x  3y  z  5
5x  4y  3z  7
7x  7y  6z  10
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Homogeneous Systems

Definition: A homogeneous system of m equations in n
unknowns is a system of linear equations where the right side of
the equations consists entirely of zeros. In other words, the
augmented matrix has the form:

A | 0 m ,

where A is an m  n matrix. If the right side b is not the zero
vector, we call the system non-homogeneous.

Clearly, x  0 n  0, 0, . . . , 0 is a solution to the
homogeneous system. We call this the trivial solution to a
homogeneous system, and any other solution is called a
non-trivial solution.

Section 1.5 Linear Systems and Linear Independence 7



When do we get an Infinite Number of
Solutions?
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Theorem: A homogeneous system has an infinite number of
solutions (and hence, non-trivial solutions) if and only if the rref
of A has free variables.

What shape of system always has a free variable?
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Theorem: An underdetermined homogeneous system always has
an infinite number of solutions. In other words, a homogeneous
system with more variables than equations has an infinite
number of solutions.

Example:

4 8 3 9 | 6
3 6 4 13 | 17
2 4 3 9 | 12



1 2 0 3 | 3

0 0 1 1 | 2

0 0 0 0 | 0
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Matrix Products

Set-up:

Identify a vector with a column matrix:

x  x1, x2,  , xn  

x1

x2



xn

Partition a matrix into columns:

A  c1 c2  cn ,
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Definition — Matrix Product:

If A  c1 c2  cn is an m  n matrix and x  n, we

define the matrix product Ax to be the linear combination:

Ax  c1 c2  cn

x1

x2



xn

 x1c1  x2c2   xncn.

Notice that since each column is an m  1 matrix, the matrix
product is again an m  1 matrix. Thus, Ax is a linear
combination of the columns of A with coefficients from x, and so
Ax  m.
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Example:

7 1 2 6
2 5 3 4

8 3 5 1

4
2

3
5

.
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Theorem — Properties of Matrix Multiplication:
For all m  n matrices A, for all x, y  n, and for all k  ,
matrix multiplication enjoys the following properties:

The Additivity Property Ax  y  Ax  Ay.

The Homogeneity Property Akx  kAx.
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The Matrix Product Form of Linear
Systems

x1v1  x2v2   xnvn  b.

We formed the augmented matrix v1 v2  vn | b and looked
at its rref.

Alternative way:

v1 v2  vn

x1

x2



xn

 b.

Section 1.5 Linear Systems and Linear Independence 15



Matrix Equation:

Ax  b
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Rephrase Consistency Requirement for
Membership in a Span

Theorem: Suppose that S  v1, v2, . . . , vn  be a set of vectors
from m, and b  m. Let us form the m  n matrix:

A  v1 v2  vn .

Then, b  SpanS if and only if the matrix equation Ax  b is
consistent.

Section 1.5 Linear Systems and Linear Independence 17



Major Concept: Linear Dependence and
Independence

Definition: A set of vectors S  v1, v2, . . . , vn  from m is
linearly dependent if we can find a non-trivial solution
x  x1, x2, . . . , xn   n, where at least one component is not
zero, to the vector equation:

x1v1  x2v2   xnvn  0 m.

We will call this equation the dependence test equation for S. An
equation of this form where at least one coefficient is not zero
will be referred to as a dependence equation. Thus, for S to be
linearly dependent, we must find a non-trivial solution x to the
homogeneous system:

Ax  0 m,

where A  v1 | v2 | . . . | vn is the matrix with the vectors v1,
v2, . . . , vn as its columns. This is equivalent to the presence of a
free variable in the rref of the matrix A.
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However, if only the trivial solution x  0 n exists for the
dependence test equation, we say that S is linearly independent.

We often drop the adjective “linearly” and simply say that a set S
is dependent or independent.
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Example: The standard basis S  e1, e2,  , em.

Example: Suppose that v1  4,5, 3,2, v2  7,6, 2,4
and v3  1,7, 9, 2.
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Classifying Small Sets of Vectors

Theorem: Any set S  0 n, v1, v2, . . . , vn  m containing

0 m is a dependent set.

Theorem: A set S  v consisting of a single non-zero vector
v  m is independent.

When is S  u, v linearly dependent / independent?
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Theorem: A set S  u, v consisting of two vectors from m is
dependent if and only if u and v are parallel to each other.
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Two Dependent

(Parallel) Vectors

Two Independent

(Non-Parallel) Vectors

Example: 15,10, 20,25, 9, 6,12, 15 

When is S  u, v, w  linearly dependent / independent?
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Theorem: A set S  u, v, w  consisting of three non-zero
vectors from m is dependent if and only if u, v and w are
coplanar.
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Three Dependent

(Non-Parallel) Vectors

where

w  Spanu, v  

Three Independent

(Non-Parallel) Vectors

where

w  Spanu, v  

Example:

S  2,3, 4, 5, 3,6, 4,2, 7 .
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Another Way to Think of Linear
Dependence/Independence

Theorem: Suppose that S  v1, v2, . . . , vn  is a set of non-zero
vectors from some m, and S contains at least two vectors. Then:
S is linearly dependent if and only if at least one vector vi from S
can be expressed as a linear combination of the other vectors in
S.
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Guaranteed Dependence

If the vectors are from n, what is the minimum number of
vectors required to produce an underdetermined system?

Theorem: A set S  v1, v2, . . . , vm  of m vectors from n is
automatically linearly dependent if m  n.

Example:

S  5,3, 0, 2 , 2,7, 3,8, 1, 0,  2, 4 ,

5, 1, 6,3, 2, 5, 1, 6
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