1.7 Subspaces of Euclidean Spaces; Basis and Dimension

Definition: A subspace W of \mathbb{R}^n is a non-empty subset of vectors of \mathbb{R}^n such that if $\vec{u}, \vec{v} \in W$, and $r \in \mathbb{R}$, then we also have:

$\vec{u} + \vec{v} \in W$ and $r \cdot \vec{v} \in W$.

We say *W* is *closed* under vector addition and scalar multiplication, and write:

$$
W\trianglelefteq\mathbb{R}^n
$$

to indicate that *W* is a subspace of \mathbb{R}^n . We call \mathbb{R}^n the *ambient space* of *W*.

Theorem: The zero vector $\vec{0}_n$ is always a member of any subspace $W \trianglelefteq \mathbb{R}^n$.

Definition/Theorem: For any \mathbb{R}^n , there are two *trivial subspaces:* (1) the subspace $\{\vec{0}_n\}$ consisting only of the zero vector, and (2) all of \mathbb{R}^n itself.

Span(S) as a Subspace

Theorem: If $S = \{\vec{u}_1, \vec{u}_2, ..., \vec{u}_k\}$ is a non-empty set of vectors from \mathbb{R}^n , then $W = Span(S)$ is a *subspace* of \mathbb{R}^n .

Examples:

A Line Through the Origin is a Subspace of \mathbb{R}^2

Lines or Planes Through the Origin are Subspaces of \mathbb{R}^3

Basis for a Subspace

Definition: A *basis* for a non-zero subspace $W \trianglelefteq \mathbb{R}^n$ is a non-empty set of vectors $B = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_k\}$ which **Spans** *W* and is also *linearly independent*.

Example: "Standard basis" $\{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ for \mathbb{R}^n . \Box

Example:

line through the origin

plane through the origin

A Basis for Span(S)

Theorem: The set $B = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_k\}$ is a *basis* for $W = Span(B)$ *if and only if B* is linearly independent.

Example: Suppose $S = \{ (1, 7, 3, -8, 2), (4, -2, 5, 3, -4) \}.$

Theorem — The Minimizing Theorem (Basis for Span(S) Version):

Suppose $S = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_k\}$ and $W = Span(S)$. If $A = \begin{bmatrix} \vec{w}_1 & \vec{w}_2 & \cdots & \vec{w}_k \end{bmatrix}$, and *R* is the rref of *A*, then the columns of *A* corresponding to the *leading columns* of *R* form a *basis* for *W*.

Example: Suppose $W = Span(S)$, where:

$$
S = {\vec{w}_1, \vec{w}_2, \vec{w}_3}
$$

= { $\langle 11, -13, -8, 17 \rangle$, $\langle -4, 7, 3, -6 \rangle$, $\langle 10, -5, -7, 16 \rangle$ }.

Constructing a Basis for Any Subspace

Theorem — Existence of a Basis Theorem:

If *W* is any *non-zero* subspace of \mathbb{R}^n , then *there exists* a basis $B = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_k\}$ for *W*. In other words, we can write:

$$
W = Span(B) = Span(\{\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_k\}),
$$

where *B* is a linearly independent set that Spans *W*. Furthermore, we must have $k \leq n$.

Theorem — The Subspaces of Euclidean 2-Space and 3-Space:

- The only subspaces of \mathbb{R}^2 are:
- (a) the zero subspace $\{\vec{0}_2\},\$
- (b) the *lines* through the origin, and
- (c) all of \mathbb{R}^2 .

Similarly, the only subspaces of \mathbb{R}^3 are:

- (a) the zero subspace $\{\vec{0}_3\},$
- (b) the *lines* through the origin,
- (c) the *planes* through the origin, and
- (d) all of \mathbb{R}^3 .

The Dimension of a Subspace

Theorem/Definition — The Dimension of a Subspace:

If B and B' are any two bases for the same non-zero subspace $W \trianglelefteq \mathbb{R}^n$, then *B* and *B*^{*i*} contain *exactly the same number of vectors*. We call this number the *dimension* of *W*, and we write $dim(W) = k$. We also say that *W* is *k*-dimensional.

We agreed that the trivial subspace $\{\vec{0}_n\}$ does *not* have a basis. By convention, $dim(\{\vec{0}_n\}) = 0$.

Conversely, *dimW* is a *positive integer* for a *non-zero* subspace *W*.

 $Example: dim(\mathbb{R}^n) = ?$

Example:

line through the origin

plane through the origin

Example: $W = Span(S)$, where: $S = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ $=$ $\langle 11, -13, -8, 17 \rangle, \langle -4, 7, 3, -6 \rangle,$ $\langle 10,-5,-7, 16 \rangle$.

- ambient space?
- maximum possible dimension?
- basis?
- actual dimension?

Example: $W = Span(S)$, where: $S = \{ (3, -2, 5, 4, 1, -6), (5, -3, 6, 3, 2, -8),$ $\langle -11, 5, -2, 11, -6, 8 \rangle$, $\{-2, 1, -4, -2, 0, 6\}, \{-4, 1, -1, 7, -1, 6\}$.

ambient space?

maximum possible dimension?

$$
A = \begin{bmatrix} 3 & 5 & -11 & -2 & -4 \\ -2 & -3 & 5 & 1 & 1 \\ 5 & 6 & -2 & -4 & -1 \\ 4 & 3 & 11 & -2 & 7 \\ 1 & 2 & -6 & 0 & -1 \\ -6 & -8 & 8 & 6 & 6 \end{bmatrix}
$$

$$
R = \begin{bmatrix} 1 & 0 & 8 & 0 & 5 \\ 0 & 1 & -7 & 0 & -3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

, with rref: