2.1 Mapping Spaces: Introduction to Linear Transformations

Definition: Let X and Y be any two sets. A **function** $f: X \to Y$ is a rule (or a recipe, or a formula) that receives as its input an element x of X, and assigns to x as its output a **unique** element y of Y.

We write y = f(x), as usual, and also call y the *image* of x under f.

We call X the **domain** of f, and call Y the **codomain** of f. We can also call f a **map** (because it tells us where to go), and say that f **maps** X **into** Y.

Linear Transformations

Definition: A *linear transformation* $T : \mathbb{R}^n \to \mathbb{R}^m$ is a function that satisfies:

For all \vec{u} , $\vec{v} \in \mathbb{R}^n$, and for all $k \in \mathbb{R}$:

The Additivity Property:

$$T(\overrightarrow{u} + \overrightarrow{v}) = T(\overrightarrow{u}) + T(\overrightarrow{v})$$

The Homogeneity Property:

$$T(k \cdot \vec{u}) = k \cdot T(\vec{u})$$

In the special case when $T: \mathbb{R}^n \to \mathbb{R}^n$, that is, the domain is the same space as the codomain, we call T a *linear operator*.

The Additivity Property

The Homogeneity Property

Theorem: A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation *if and only if* we can find an $m \times n$ matrix A so that the action of T can be performed by matrix multiplication:

$$T(\vec{x}) = A\vec{x}$$

where we view $\vec{x} \in \mathbb{R}^n$ as an $n \times 1$ matrix. We refer to A as the *standard matrix* of T, and we write:

$$[T] = A = [T(\overrightarrow{e}_1) \mid T(\overrightarrow{e}_2) \mid \dots \mid T(\overrightarrow{e}_n)].$$

In particular, if $T: \mathbb{R}^n \to \mathbb{R}^n$ is an *operator*, [T] is an $n \times n$ or *square* matrix.

Some Basic Examples

Example: The zero transformation of \mathbb{R}^n into \mathbb{R}^m :

$$Z_{n,m}: \mathbb{R}^n \to \mathbb{R}^m$$
, given by $Z_{n,m}(\vec{x}) = \vec{0}_m$ for all $\vec{x} \in \mathbb{R}^n$,

$$[Z_{n,m}] = 0_{m \times n} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

For all $\vec{x} \in \mathbb{R}^n$:

$$0_{m\times n}\vec{x}=\vec{0}_m.$$

Example: The Identity Operator on \mathbb{R}^n :

$$I_{\mathbb{R}^n}: \mathbb{R}^n \to \mathbb{R}^n$$
 defined by

$$I_{\mathbb{R}^n}(\vec{x}) = \vec{x}$$
 for all $x \in \mathbb{R}^n$

The Identity matrix I_n :

$$[I_{\mathbb{R}^n}] = I_n = \begin{bmatrix} \overrightarrow{e}_1 \ \overrightarrow{e}_2 \ \cdots \overrightarrow{e}_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$I_n \overrightarrow{x} = \overrightarrow{x}.$$

Example: The Scaling Operators: For any $k \in \mathbb{R}$:

$$S_k : \mathbb{R}^n \to \mathbb{R}^n,$$

$$S_k(\vec{x}) = k\vec{x} \qquad \text{for all } \vec{x} \in \mathbb{R}^n$$

Elementary Matrices

Definition: An $n \times n$ matrix E is called an **elementary matrix** if it is obtained by performing a **single** elementary row operation on the identity matrix I_n .

Type:	Notation:
1. Multiply row i by $c \neq 0$	$R_i \rightarrow cR_i$
2. Exchange row i and row j	$R_i \leftrightarrow R_j$
3. Add c times row j to row i	$R_i \rightarrow R_i + cR_j$

The Basic Box

The Basic Box

Made of the 3 vectors:

$$\left\{ \overrightarrow{i}, \ \overrightarrow{j}, \ \overrightarrow{i} + \overrightarrow{j} \right\}$$

Horizontal and Vertical

Dilations and Contractions

A 2×2 Type 1 elementary matrix has the form:

$$\left[\begin{array}{cc}c&0\\0&1\end{array}\right]$$

Horizontal Effect

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & c \end{array}\right]$$

Vertical Effect

Shear Operators

A 2×2 Type 3 elementary matrix has the form:

 $\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix}$

A Horizontal Shearing Operator

 $\left[\begin{array}{cc} 1 & 0 \\ c & 1 \end{array}\right]$

A Vertical Shearing Operator