2.3 Operations on Linear Transformations and Matrices

Definitions: If $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ and $T_2 : \mathbb{R}^n \to \mathbb{R}^m$ are linear transformations, and $k \in \mathbb{R}$, then we can define:

$$
T_1 + T_2 : \mathbb{R}^n \to \mathbb{R}^m,
$$

$$
T_1 - T_2 : \mathbb{R}^n \to \mathbb{R}^m, \text{ and}
$$

$$
kT_1 : \mathbb{R}^n \to \mathbb{R}^m,
$$

as linear transformations, with actions given, respectively, by:

$$
(T_1 + T_2)(\vec{v}) = T_1(\vec{v}) + T_2(\vec{v}),
$$

\n
$$
(T_1 - T_2)(\vec{v}) = T_1(\vec{v}) - T_2(\vec{v}),
$$
 and
\n
$$
(kT_1)(\vec{v}) = kT_1(\vec{v}).
$$

Arithmetic of Matrices

Definitions: If *A* and *B* are both $m \times n$ matrices, and *k* is any scalar, then we can define:

$$
A + B
$$
, $A - B$, and kA

as $m \times n$ matrices with entries given by:

$$
(A + B)_{i,j} = (A)_{i,j} + (B)_{i,j},
$$

\n $(A - B)_{i,j} = (A)_{i,j} - (B)_{i,j},$ and
\n $(kA)_{i,j} = k(A)_{i,j}.$

We call these the sum and difference of *A* and *B*, and the scalar multiple of *A* by *k*.

In particular, we can define the *negative* of a matrix, $-A$, to be:

$$
-A = (-1)A
$$

with the property that:

$$
A + (-A) = (-A) + A = 0_{m \times n}
$$

Connection Between Linear Transformations and Matrices

Theorem: If $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ and $T_2 : \mathbb{R}^n \to \mathbb{R}^m$ are linear transformations, with matrices $[T_1]$ and $[T_2]$ respectively, and *k* is any scalar, then for any $\vec{v} \in \mathbb{R}^n$:

$$
(T_1 + T_2)(\vec{v}) = ([T_1] + [T_2])\vec{v}
$$

$$
(T_1 - T_2)(\vec{v}) = ([T_1] - [T_2])\vec{v}
$$

$$
(kT_1)(\vec{v}) = (k[T_1])\vec{v}
$$

Consequently, $T_1 + T_2$, $T_1 - T_2$ and kT_1 are linear transformations with matrices given by, respectively:

$$
[T_1 + T_2] = [T_1] + [T_2],
$$

\n
$$
[T_1 - T_2] = [T_1] - [T_2],
$$
 and
\n
$$
[kT_1] = k[T_1]
$$

Compositions of Linear Transformations

 $Definition/Theorem: \text{ If } T_1: \mathbb{R}^n \rightarrow \mathbb{R}^k \text{ and } T_2: \mathbb{R}^k \rightarrow \mathbb{R}^m \text{ are }$ linear transformations, then we can define their *composition*:

$$
T_2 \circ T_1 : \mathbb{R}^n \to \mathbb{R}^m
$$

as a linear transformation, with action given as follows:

Suppose $\vec{u} \in \mathbb{R}^n$, $T_1(\vec{u}) = \vec{v} \in \mathbb{R}^k$, and $T_2(\vec{v}) = \vec{w} \in \mathbb{R}^m$. Then:

 $(T_2 \circ T_1)(\vec{u}) = T_2(T_1(\vec{u})) = T_2(\vec{v}) = \vec{w}.$

$$
\mathbb{R}^n \stackrel{T_1}{\to} \mathbb{R}^k \stackrel{T_2}{\to} \mathbb{R}^m
$$

$$
\sum_{T_2 \circ T_1}^{T_2 \circ T_1} \nearrow
$$

General Matrix Products

Definition — Matrix Product:

If *A* is an $m \times k$ matrix, and *B* is a $k \times n$, then we can construct the $m \times n$ matrix *AB*, where:

column *i* of $AB = A \times$ (column *i* of *B*)

In other words, if we write *B* in terms of its columns as:

$$
B = \begin{bmatrix} \vec{c}_1 & \vec{c}_2 & \cdots & \vec{c}_n \end{bmatrix}
$$

then:

$$
AB = \left[\overrightarrow{Ac_1} \, | \, \overrightarrow{Ac_2} \, | \, \cdots \, | \, \overrightarrow{Ac_n} \, \right]
$$

Linear Combinations of Linear Transformations and Matrices

$$
(c_1T_1 + c_2T_2 + \cdots + c_kT_k)(\vec{v})
$$

= $c_1T_1(\vec{v}) + c_2T_2(\vec{v}) + \cdots + c_kT_k(\vec{v})$

 $c_1A_1 + c_2A_2 + \cdots + c_kA_k$.

 $[c_1T_1 + c_2T_2 + \cdots + c_kT_k]$ $= c_1[T_1] + c_2[T_2] + \cdots + c_k[T_k]$