
2.4 Properties of Operations on
Linear Transformations and Matrices

Goal: Show that matrix operations enjoy many (but not all!!!) of
the properties of the analogous operations on ordinary real
numbers.
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Properties of Matrix Addition and Scalar Multiplication

Theorem: If A, B and C are m  n matrices, and r and s are scalars,
then the following properties hold:

1. The Commutative Property of Addition:

A  B  B  A
2. The Associative Property of Addition:

A  B  C  A  B  C

3. The “Left” Distributive Property:

r  sA  rA  sA

4. The “Right” Distributive Property:

rA  B  rA  rB

5. The Associative Property of Scalar Multiplication:

rsA  rsA  srA
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Properties of Matrix Multiplication

Theorem: If A and B are m  k matrices, C and D are k  n
matrices, and r is a scalar, then the following properties hold:

1. The “Left” Distributive Property:

A  BC  AC  BC

2. The “Right” Distributive Property:

AC  D  AC  AD

3. The Associative Property of Mixed (Scalar and Matrix)
Products:

rBC  rBC  BrC
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The Associative Property of Matrix Multiplication

Theorem: If A is an m  p matrix, B is a p  q matrix, and C is a
q  n matrix, then ABC  ABC.

Proof:

Both products ABC and ABC are m  n matrices.

Now, we have to show that both sides, pair-wise, have exactly the
same entries.

Case 1: C  x, a q  1 matrix.

B  b1 b2  bq

AB  Ab1 Ab2  Abq
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ABx  Ab1 Ab2  Abq

x1

x2



xq

 x1 Ab1  x2 Ab2   xq Abq

Now, let us work on ABx:

Bx  b1 b2  bq

x1

x2



xq

 x1b1  x2b2   xqbq
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ABx  A x1b1  x2b2   xqbq

 A x1b1  A x2b2   A xqbq

by the “Right” Distributive Property)

 x1 Ab1  x2 Ab2   xq Abq

Case 2: C is an arbitrary q  n matrix:

C  c1 c2 ... cn

ABci  ABci

for every column ci.

Thus, column i of ABC is exactly the same as that of ABC,
and therefore ABC  ABC.
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The Matrix of a Composition

Theorem: If T1 : n  k and T2 : k  m are linear
transformations, then:

T2  T1   T2 T1 
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k-fold Compositions

If T1, T2, . . . . , Tk1, Tk are all linear transformations with the
property that the codomain of Ti is the domain of Ti1, for all
i  1. . k  1, then we can inductively construct the k fold
composition of these linear transformations by:

Tk  Tk1   T2  T1v
 TkTk1   T2  T1v

Tk  Tk1   T2  T1   Tk Tk1 T2 T1 
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Powers of Square Matrices and Linear Operators

Theorem: The matrix product AA can be formed if and only if A
is an n  n matrix. Analogously, the composition T  T can be
formed if and only if T : n  n, i.e., T is an operator.

Write AA as A2 and T  T as T 2.

Similarly, by induction, we will write:

Ak  A  Ak1  A  A    A, and

T kv  TT k1v  TT. . . Tv
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Evaluating a Polynomial with a Matrix:

Definition: If px  c0  c1x  c2x2   ckxk is a polynomial
with real coefficients, and A is any n  n matrix, then we define the
polynomial evaluation, pA, by:

pA  c0In  c1A  c2A2   ckAk.
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Multiplication by In and 0mn

Theorem: If A is any m  n matrix, then:

AIn  A and ImA  A;

A0np  0mp and 0qmA  0qn.
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Danger Zone!

The Existence of Zero Divisors:

Definition: Two n  n matrices A and B with the property that
AB  0nn, but neither A nor B is 0nn are called zero divisors.

In other words, The Zero Factors Theorem does not hold for
matrices.

AB  BA Most of the Time!

Matrix multiplication, in general, is NOT commutative!
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A Linear Transformation is Uniquely Determined by any Basis

Theorem: If T : n  m is a linear transformation, and
B  v1, v2, . . . , vn is any basis for n, then the action of T is
uniquely determined by the vectors Tv1, Tv2, . . . , Tvn
from m.

More specifically, if v  n and v is expressed (uniquely) as
v  c1v1  c2v2   cnvn, then:

Tv  c1Tv1  c2Tv2   cnTvn.
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