2.4 Properties of Operations on Linear Transformations and Matrices

Goal: Show that matrix operations enjoy many (but not all!!!) of the properties of the analogous operations on ordinary real numbers.

Properties of Matrix Addition and Scalar Multiplication

Theorem: If *A*, *B* and *C* are $m \times n$ matrices, and *r* and *s* are scalars, then the following properties hold:

1. *The Commutative Property of Addition:* $A + B = B + A$ 2. *The Associative Property of Addition:* $A + (B + C) = (A + B) + C$ 3. *The "Left" Distributive Property:* $(r + s)A = rA + sA$ 4. *The "Right" Distributive Property:*

 $r(A + B) = rA + rB$

5. *The Associative Property of Scalar Multiplication:* $r(sA) = (rs)A = s(rA)$

Properties of Matrix Multiplication

Theorem: If *A* and *B* are $m \times k$ matrices, *C* and *D* are $k \times n$ matrices, and *r* is a scalar, then the following properties hold:

1. *The "Left" Distributive Property:*

 $(A + B)C = AC + BC$

2. *The "Right" Distributive Property:*

 $A(C+D) = AC + AD$

3. *The Associative Property of Mixed (Scalar and Matrix) Products:*

 $r(BC) = (rB)C = B(rC)$

The Associative Property of Matrix Multiplication

Theorem: If *A* is an $m \times p$ matrix, *B* is a $p \times q$ matrix, and *C* is a $q \times n$ matrix, then $A(BC) = (AB)C$.

Proof:

Both products $A(BC)$ and $(AB)C$ are $m \times n$ matrices.

Now, we have to show that both sides, pair-wise, have exactly the *same entries*.

Case 1: $C = \vec{x}$, a $q \times 1$ matrix.

$$
B=\left[\vec{b}_1 \ \vec{b}_2 \ ... \ \vec{b}_q\ \right]
$$

$$
AB = \left[\vec{Ab_1} \, \vec{Ab_2} \, \dots \, \vec{Ab_q} \right]
$$

$$
(AB)\vec{x} = \begin{bmatrix} A\vec{b}_1 A\vec{b}_2 ... A\vec{b}_q \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_q \end{bmatrix}
$$

$$
= x_1(A\vec{b}_1) + x_2(A\vec{b}_2) + \dots + x_q(A\vec{b}_q)
$$

Now, let us work on $A(B\vec{x})$:

$$
B\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \dots & \vec{b}_q \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_q \end{bmatrix}
$$

$$
= x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_q \vec{b}_q
$$

$$
A(B\vec{x}) = A(x_1\vec{b}_1 + x_2\vec{b}_2 + \dots + x_q\vec{b}_q)
$$

= $A(x_1\vec{b}_1) + A(x_2\vec{b}_2) + \dots + A(x_q\vec{b}_q)$
(by the "Right" Distributive Property)

$$
= x_1(A\vec{b}_1) + x_2(A\vec{b}_2) + \dots + x_q(A\vec{b}_q)
$$

Case 2: *C* is an arbitrary $q \times n$ matrix:

$$
C = \begin{bmatrix} \vec{c}_1 & \vec{c}_2 & \dots & \vec{c}_n \end{bmatrix}
$$

$$
(AB)\vec{c}_i = A(B\vec{c}_i)
$$

for every column \vec{c}_i .

Thus, column *i* of *ABC* is exactly the same as that of *ABC*, and therefore $(AB)C = A(BC)$.

The Matrix of a Composition

Theorem: If $T_1 : \mathbb{R}^n \to \mathbb{R}^k$ and $T_2 : \mathbb{R}^k \to \mathbb{R}^m$ are linear transformations, then:

 $[T_2 \circ T_1] = [T_2][T_1]$

k-fold Compositions

If $T_1, T_2, \ldots, T_{k-1}, T_k$ are all linear transformations with the property that *the codomain of* T_i *is the domain of* T_{i+1} , for all $i = 1..k - 1$, then we can inductively construct the k -fold *composition* of these linear transformations by:

$$
(T_k \circ T_{k-1} \circ \cdots \circ T_2 \circ T_1)(\vec{v})
$$

= $T_k((T_{k-1} \circ \cdots \circ T_2 \circ T_1)(\vec{v}))$

 $[T_k \circ T_{k-1} \circ \cdots \circ T_2 \circ T_1] = [T_k][T_{k-1}] \cdots [T_2][T_1]$

Powers of Square Matrices and Linear Operators

Theorem: The matrix product *AA* can be formed *if and only if A* is an $n \times n$ matrix. Analogously, the composition $T \circ T$ can be formed if and only if $T : \mathbb{R}^n \to \mathbb{R}^n$, i.e., *T* is an *operator*.

Write AA as A^2 and $T \circ T$ as T^2 .

Similarly, by induction, we will write:

 $A^k = A \cdot A^{k-1} = A \cdot A \cdot \cdots \cdot A$, and $T^k(\vec{v}) = T(T^{k-1}(\vec{v})) = T(T(\dots T(\vec{v})))$

Evaluating a Polynomial with a Matrix:

Definition: If $p(x) = c_0 + c_1x + c_2x^2 + \cdots + c_kx^k$ is a polynomial with real coefficients, and *A* is any $n \times n$ matrix, then we define the *polynomial evaluation*, $p(A)$, by:

$$
p(A) = c_0 I_n + c_1 A + c_2 A^2 + \cdots + c_k A^k.
$$

Multiplication by I_n and $0_{m \times n}$

Theorem: If *A* is any $m \times n$ matrix, then:

 $AI_n = A$ and $I_mA = A;$ $A0_{n\times p} = 0_{m\times p}$ and $0_{q\times m}A = 0_{q\times n}$.

Danger Zone!

The Existence of Zero Divisors:

Definition: Two $n \times n$ matrices A and B with the property that $AB = 0_{n \times n}$, but *neither A* nor *B* is $0_{n \times n}$ are called *zero divisors*.

In other words, The Zero Factors Theorem does not hold for matrices.

 $AB \neq BA$ *Most of the Time!*

Matrix multiplication, in general, is NOT commutative!

A Linear Transformation is Uniquely Determined by any Basis

Theorem: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, and $B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is any *basis* for \mathbb{R}^n , then the action of *T* is uniquely determined by the vectors $\{T(\vec{v}_1), T(\vec{v}_2), \ldots, T(\vec{v}_n)\}$ from \mathbb{R}^m .

More specifically, if $\vec{v} \in \mathbb{R}^n$ and \vec{v} is expressed (uniquely) as $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$, then:

 $T(\vec{v}) = c_1 T(\vec{v}_1) + c_2 T(\vec{v}_2) + \cdots + c_n T(\vec{v}_n).$