2.5 One-to-One Transformations and Onto Transformations

The Kernel and Range of a Linear Transformation

Definition: If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, we define the *kernel* of T as the set:

$$ker(T) = \left\{ \vec{v} \in \mathbb{R}^n \, | \, T(\vec{v}) = \vec{0}_m \right\} \subset \mathbb{R}^n.$$

Similarly, we define the *range* of *T* as the set:

 $range(T) = \left\{ \vec{w} \in \mathbb{R}^m \, | \, \vec{w} = T(\vec{v}) \text{ for some } \vec{v} \in \mathbb{R}^n \right\} \subset \mathbb{R}^m.$

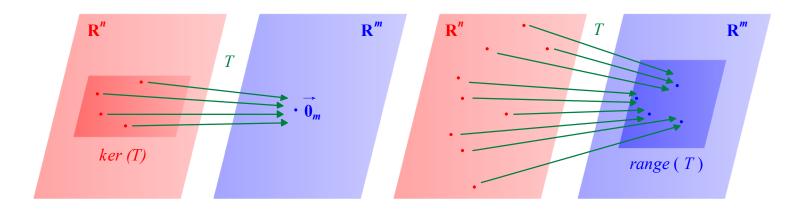
We emphasize that ker(T) is from \mathbb{R}^n , and range(T) is from \mathbb{R}^m .

Theorem: If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a *linear transformation*, then:

 $ker(T) = nullspace([T]) \leq \mathbb{R}^n$, and $range(T) = colspace([T]) \leq \mathbb{R}^m$.

We call the dimension of ker(T) the *nullity* of *T*, written *nullity*(*T*). Similarly, we call the dimension of range(T) the *rank* of *T*, written *rank*(*T*). Thus:

nullity(T) = dim(nullspace([T])) = nullity([T]), andrank(T) = dim(colspace([T])) = rank([T]).



The Kernel of *T*

The Range of *T*

The Dimension Theorem for Linear Transformations

Theorem: Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Then: rank(T) + nullity(T) = n

One-to-One Transformations

Definition: We say that a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** or **injective** if the image of two different vectors from the domain are different vectors of the codomain:

If $\vec{v}_1 \neq \vec{v}_2$ then $T(\vec{v}_1) \neq T(\vec{v}_2)$.

We also say that *T* is an *injection* or an *embedding*.

Theorem: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** if and only if the only way two vectors from the domain have the same image in the codomain is for them to be the same vector to begin with:

If $T(\vec{v}_1) = T(\vec{v}_2)$ then $\vec{v}_1 = \vec{v}_2$.

In other words, the *only solution* to $T(\vec{v}_1) = T(\vec{v}_2)$ is $\vec{v}_1 = \vec{v}_2$.

Theorem — The Kernel Test for Injectivity: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if and only if: $ker(T) = \left\{ \vec{0}_n \right\}.$

(⇒) We are given that *T* is one-to-one. We must show that $ker(T) = {\vec{0}_n}$. Suppose $\vec{v} \in ker(T)$.

(\Leftarrow) We are given that $ker(T) = \{ \vec{0}_n \}$. We must show that *T* is one-to-one. So suppose $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^n$, and $T(\vec{v}_1) = T(\vec{v}_2)$. *Example:* Suppose $T_1, T_2 : \mathbb{R}^3 \to \mathbb{R}^4$ are given by the following matrices with the corresponding rrefs. Describe the kernel of each, decide if either is one-to-one, and verify the Dimension Theorem for both.

$$[T_1] = \begin{bmatrix} 1 & -3 & 4 \\ 2 & -6 & 9 \\ 5 & -15 & 4 \\ -3 & 9 & -7 \end{bmatrix},$$

with rref $R_1 = \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$

$$[T_2] = \begin{bmatrix} 1 & -2 & 4 \\ 2 & -6 & 9 \\ 5 & -15 & 4 \\ -3 & 9 & -7 \end{bmatrix},$$

with rref $R_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$

Describe the kernel and range of each, decide if either is one-to-one, and verify the Dimension Theorem for both.

Theorem: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **not** one-to-one if n > m.

Onto Linear Transformations

Definition: We say that a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is *onto* or *surjective* if:

range(
$$T$$
) = \mathbb{R}^m .

We also say that T is a *surjection* or a *covering* (because T hits all the vectors of \mathbb{R}^m).

Theorem: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if and **only if** rank(T) = m.

Example: Suppose $T_1, T_2 : \mathbb{R}^3 \to \mathbb{R}^2$ are given by the following matrices with the corresponding rrefs. Describe the kernel and range of each, decide if either is one-to-one, and/or onto, and verify the Dimension Theorem for both.

$$\begin{bmatrix} T_1 \end{bmatrix} = \begin{bmatrix} -2 & -8 & 6 \\ 1 & 4 & -3 \end{bmatrix}, \text{ with rref } R_1 = \begin{bmatrix} 1 & 4 & -3 \\ 0 & 0 & 0 \end{bmatrix}.$$
$$\begin{bmatrix} T_2 \end{bmatrix} = \begin{bmatrix} -2 & -8 & 7 \\ 1 & 4 & -3 \end{bmatrix}, \text{ with rref } R_2 = \begin{bmatrix} 1 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Theorem: A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **not** onto if n < m.

Using the RREF of the Matrix of T

Theorem: Suppose that $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, and R is the rref of [T]. Then:

1. *T* is *one-to-one if and only if R* does *not* have any free variables.

2. *T* is *onto if and only if R* does *not* have any row consisting only of zeroes.

Theorem — Equivalent Properties for Full-Rank Linear Transformations:

Suppose that $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Then:

1. if m < n: T is full-rank *if only only if* T is *onto*.

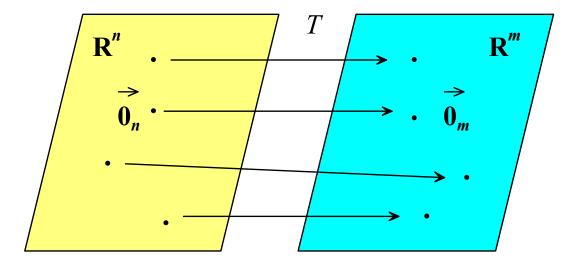
if m = n: T is full-rank if and only if T is both one-to-one and onto.

3. if m > n: T is full-rank *if and only if* T is **one-to-one**.

Proof: Exercise.

A Recap of The One-to-One and Onto Properties

A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is *one-to-one* if and only if $ker(T) = \{\vec{0}_n\}$. This means that if $\vec{v} \in \mathbb{R}^n$ is any other vector but $\vec{0}_n$, then $T(\vec{v}) \neq \vec{0}_m$.

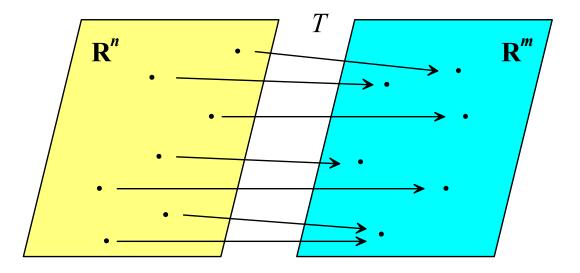


T is *one-to-one* if and only if:

$$ker(T) = \left\{ \overrightarrow{0}_n \right\}$$

A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is *onto* if and only if $range(T) = \mathbb{R}^m$.

This means that for any vector $\vec{w} \in \mathbb{R}^m$, we can find at least one vector $\vec{v} \in \mathbb{R}^n$ such that $T(\vec{v}) = \vec{w}$. We remark that more than one such vector \vec{v} could exist for every \vec{w} . This also means that rank(T) = m.



T is *onto* if and only if:

 $range(T) = \mathbb{R}^m$

Anything Can Happen:

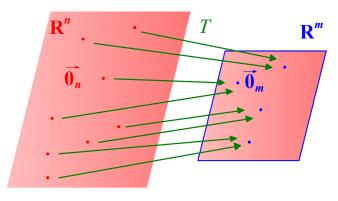
Suppose that $T : \mathbb{R}^n \to \mathbb{R}^m$.

If we *don't* know anything about *n* or *m*, then *T* can be:

- one-to-one but not onto;
- onto but not one-to-one;
- *neither* one-to-one nor onto;
- *both* one-to-one and onto.

However, if we *knew* that:

n > *m*, then *T* is automatically *not one-to-one*; however, *T* can be onto, or not onto.



T is onto, but not one-to-one rank (*T*) = m; *T* is full rank

T is neither onto nor one-to-one rank(T) < m

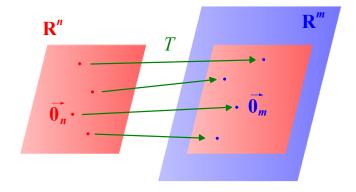
T

 \mathbf{R}^{m}

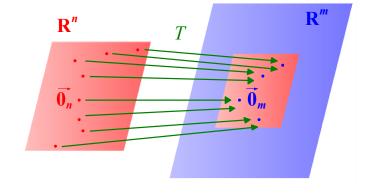
 \mathbf{R}^n

n < m, then T is automatically *not onto*;

however, T can be one-to-one, or not one-to-one.



T is one-to-one, but not onto rank (T) = n; *T* is full rank



n < m T is neither one-to-one nor onto rank(T) < n