2.6 Invertible Operators and Matrices

In Algebra, we first require that a function:

$$
f:D\to R,
$$

with domain *D* and range *R*, is *one-to-one* on *D* before we find its inverse. If so:

$$
f^{-1}: R \rightarrow D
$$
, where

 $f^{-1}(y) = x$ *if and only if* $f(x) = y$.

f and *f* 1 also possess the *cancellation properties*:

$$
f^{-1}(f(x)) = f^{-1}(y) = x \text{ for all } x \in D, \text{ and}
$$

$$
f(f^{-1}(y)) = f(x) = y \text{ for all } y \in R.
$$

Definition: We say that a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is *invertible* if and only if *T* is *both* one-to-one and onto.

We also say equivalently that *T* is *bijective*, *T* is a *bijection* or *T* is an *isomorphism.*

Theorem: If $T : \mathbb{R}^n \to \mathbb{R}^m$ is invertible, then $n = m$.

Theorem: A linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ is invertible *if and only if* we can find another *unique* linear operator, T^{-1} : $\mathbb{R}^n \to \mathbb{R}^n,$ the *inverse operator* for *T*, such that if $\vec{v} \in \mathbb{R}^n$ and $T(\vec{v}) = \vec{w}$, then we define:

$$
T^{-1}(\vec{w}) = \vec{v},
$$

and thus:

$$
(T^{-1} \circ T)(\vec{v}) = \vec{v}
$$
 and $(T \circ T^{-1})(\vec{w}) = \vec{w}$.

In other words:

$$
T^{-1}\circ T=T\circ T^{-1}=I_{\mathbb{R}^n},
$$

the *identity* operator on \mathbb{R}^n .

Furthermore, if *T* is invertible, then *T* 1 is also invertible, and $(T^{-1})^{-1} = T$. Thus, we can say that *T* and *T*⁻¹ are *inverses of each other*.

The Composition of *T* with *T* 1 $T^{-1} \circ T = I_{\mathbb{R}^n} = T \circ T^{-1}$

Invertible Matrices

Definition: An $n \times n$ matrix *A* is *invertible* if and only if the linear operator $T: \mathbb{R}^n \to \mathbb{R}^n$ corresponding to $A = [T]$ is an invertible operator. In other words, the operator defined by:

$$
T(\vec{v}) = A\vec{v},
$$

for all $\vec{v} \in \mathbb{R}^n$, is an invertible operator on \mathbb{R}^n .

Theorem/Definition: An $n \times n$ matrix *A* is invertible *if and only if* we can find another $n \times n$ matrix *B* such that:

$$
AB=I_n=BA.
$$

We call *B* the *inverse matrix* of *A*, and denote it by *A* 1 .

If *A* is invertible, then the inverse matrix A^{-1} is likewise invertible, and:

$$
\left(A^{-1}\right)^{-1}=A.
$$

In other words, $B^{-1} = A$. Thus, we can say that A and A^{-1} are *inverses of each other*.

Theorem: If an $n \times n$ matrix *A* is invertible, then its inverse matrix *B* is *unique*. This means that if *B* and *C* both satisfy the equations:

 $AB = I_n = BA$ and $AC = I_n = CA$,

then $B = C$.

Theorem: Suppose that:

$$
A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right].
$$

Then *A* is invertible *if and only if* $ad - bc \neq 0$, in which case:

$$
A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right].
$$

Example:

$$
A = \left[\begin{array}{rr} -3 & -5 \\ 5 & 7 \end{array} \right].
$$

Example:

$$
A = \left[\begin{array}{rr} 3 & -7 \\ 12 & -28 \end{array} \right].
$$

The Matrix of T^{-1}

Theorem: A linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ is invertible *if and only if* $A = [T]$ is an invertible $n \times n$ matrix. If this is the case, then:

$$
\left[T^{-1}\right] = A^{-1} = \left[T\right]^{-1}.
$$

Example: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by:

$$
T(\langle x,y\rangle)=\langle 3x+7y,2x-6y\rangle.
$$

Bonus Example:

The Matrix of a Reflection Across a Plane in \mathbb{R}^3

Let Π be the plane in \mathbb{R}^3 with Cartesian equation:

$$
3x-5y+2z=0.
$$

We found in the last Example of Section 2.2 that:

$$
[refl_{\Pi}] = \left[\begin{array}{rrr} \frac{10}{19} & \frac{15}{19} & -\frac{6}{19} \\ \frac{15}{19} & -\frac{6}{19} & \frac{10}{19} \\ -\frac{6}{19} & \frac{10}{19} & \frac{15}{19} \end{array} \right]
$$