2.6 Invertible Operators and Matrices

In Algebra, we first require that a function:

$$f: D \to R$$
,

with domain D and range R, is *one-to-one* on D before we find its inverse. If so:

$$f^{-1}: R \to D$$
, where
 $f^{-1}(y) = x$ if and only if $f(x) = y$.

f and f^{-1} also possess the *cancellation properties*:

$$f^{-1}(f(x)) = f^{-1}(y) = x$$
 for all $x \in D$, and
 $f(f^{-1}(y)) = f(x) = y$ for all $y \in R$.

Definition: We say that a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is *invertible* if and only if T is **both** one-to-one and onto.

We also say equivalently that T is *bijective*, T is a *bijection* or T is an *isomorphism*.

Theorem: If $T : \mathbb{R}^n \to \mathbb{R}^m$ is invertible, then n = m.

Theorem: A linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ is invertible *if and only if* we can find another *unique* linear operator, $T^{-1} : \mathbb{R}^n \to \mathbb{R}^n$, the *inverse operator* for T, such that if $\vec{v} \in \mathbb{R}^n$ and $T(\vec{v}) = \vec{w}$, then we define:

$$T^{-1}(\vec{w}) = \vec{v},$$

and thus:

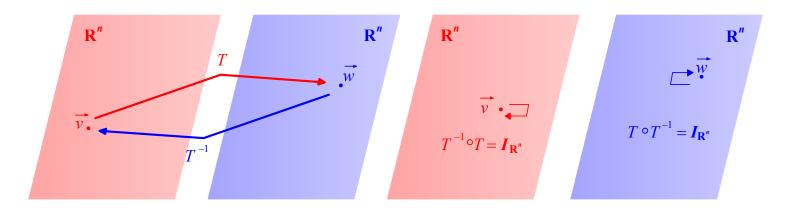
$$(T^{-1} \circ T)(\vec{v}) = \vec{v}$$
 and $(T \circ T^{-1})(\vec{w}) = \vec{w}$.

In other words:

$$T^{-1} \circ T = T \circ T^{-1} = I_{\mathbb{R}^n},$$

the *identity operator* on \mathbb{R}^n .

Furthermore, if *T* is invertible, then T^{-1} is also invertible, and $(T^{-1})^{-1} = T$. Thus, we can say that *T* and T^{-1} are *inverses of each other*.



The Composition of T with T^{-1} $T^{-1} \circ T = I_{\mathbb{R}^n} = T \circ T^{-1}$

Invertible Matrices

Definition: An $n \times n$ matrix A is **invertible** if and only if the linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ corresponding to A = [T] is an invertible operator. In other words, the operator defined by:

$$T(\vec{v}) = A\vec{v},$$

for all $\vec{v} \in \mathbb{R}^n$, is an invertible operator on \mathbb{R}^n .

Theorem/Definition: An $n \times n$ matrix A is invertible *if and only if* we can find another $n \times n$ matrix B such that:

$$AB = I_n = BA.$$

We call B the *inverse matrix* of A, and denote it by A^{-1} .

If *A* is invertible, then the inverse matrix *A*⁻¹ is likewise invertible, and:

$$(A^{-1})^{-1} = A.$$

In other words, $B^{-1} = A$. Thus, we can say that A and A^{-1} are *inverses of each other*.

Theorem: If an *n* × *n* matrix *A* is invertible, then its inverse matrix *B* is *unique*. This means that if *B* and *C* both satisfy the equations:

$$AB = I_n = BA$$
 and $AC = I_n = CA$,

then B = C.

Theorem: Suppose that:

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right].$$

Then A is invertible *if and only if* $ad - bc \neq 0$, in which case:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Example:

$$A = \begin{bmatrix} -3 & -5 \\ 5 & 7 \end{bmatrix}.$$

Example:

$$A = \begin{bmatrix} 3 & -7 \\ 12 & -28 \end{bmatrix}.$$

The Matrix of T^{-1}

Theorem: A linear operator $T : \mathbb{R}^n \to \mathbb{R}^n$ is invertible *if and only if* A = [T] is an invertible $n \times n$ matrix. If this is the case, then:

$$[T^{-1}] = A^{-1} = [T]^{-1}.$$

Example: Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be given by:

$$T(\langle x, y \rangle) = \langle 3x + 7y, 2x - 6y \rangle.$$

Bonus Example:

The Matrix of a Reflection Across a Plane in \mathbb{R}^3

Let Π be the plane in \mathbb{R}^3 with Cartesian equation:

$$3x - 5y + 2z = 0.$$

We found in the last Example of Section 2.2 that:

$$[refl_{\Pi}] = \begin{bmatrix} \frac{10}{19} & \frac{15}{19} & -\frac{6}{19} \\ \frac{15}{19} & -\frac{6}{19} & \frac{10}{19} \\ -\frac{6}{19} & \frac{10}{19} & \frac{15}{19} \\ -\frac{6}{19} & \frac{10}{19} & \frac{15}{19} \end{bmatrix}$$