2.7 Finding the Inverse of a Matrix

Goal: to be able to construct the matrix of the inverse of an invertible linear operator, and at the same time, to find the inverse of an invertible square matrix which is 3×3 or bigger, when it is possible to do so.

Multiplicative Properties of Elementary Matrices

Theorem: If *E* is an elementary $n \times n$ matrix and *A* is any $n \times m$ matrix, then the *matrix product EA* can be computed by simply performing the *same elementary row operation* on *A* that was used to produce *E* from *In*.

An elementary matrix *encodes* the elementary row operation that produced it.

Example: Suppose that

$$
A = \left[\begin{array}{rrrr} 5 & 7 & -2 & 3 \\ 4 & 1 & 8 & -5 \\ 2 & -3 & 9 & 6 \end{array} \right]
$$

and:

$$
E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

$$
E_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}
$$

$$
E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix}
$$

Then:

$$
E_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 7 & -2 & 3 \\ 4 & 1 & 8 & -5 \\ 2 & -3 & 9 & 6 \end{bmatrix}
$$

$$
E_2 A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 & 7 & -2 & 3 \\ 4 & 1 & 8 & -5 \\ 2 & -3 & 9 & 6 \end{bmatrix}
$$

$$
= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 & 7 & -2 & 3 \\ 4 & 1 & 8 & -5 \\ 2 & -3 & 9 & 6 \end{bmatrix}
$$

$$
E_3A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 5 & 7 & -2 & 3 \\ 4 & 1 & 8 & -5 \\ 2 & -3 & 9 & 6 \end{bmatrix}
$$

$$
= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 1 \end{bmatrix}
$$

Theorem: Elementary matrices are *invertible*, and the inverse of an elementary matrix is another elementary matrix of exactly the *same type*.

Examples:

\nFor
$$
E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$
, $E_1^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $E_2^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

\nFor $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix}$, $E_3^{-1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, and $E_3^{-1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

A Preliminary Test for Invertibility

Theorem: Let *A* be an $n \times n$ matrix. Then *A* is invertible *if and only if* the rref of *A* is *In*.

A Method to Find A 1

Theorem: Let *A* be an $n \times n$ matrix. If we construct the $n \times 2n$ augmented matrix:

$$
\bigl[A \,|\, I_n \,\bigr],
$$

then *A* is invertible *if and only if* the rref of this augmented matrix contains I_n in the first n columns. If this is the case, then *A* ¹ will be found in the last *n* columns. In other words, the rref of $\left[A \mid I_n \right]$ is:

$$
\left[\,I_n\ |\ A^{-1}\,\right]
$$

Key Idea: there are only two possibilities for the rref of a square matrix.

Factoring Invertible Matrices

Theorem: An $n \times n$ matrix *A* is invertible *if and only if* it can be expressed as a product of elementary matrices. If this is the case, then more precisely, we can factor *A* as:

$$
A\,=\,E_1^{-1}E_2^{-1}\cdots E_{k-1}^{-1}E_k^{-1},
$$

where E_1, E_2, \ldots, E_k are the elementary matrices corresponding to a choice of elementary row operations we used in the Gauss-Jordan Algorithm to transform *A* into *In*.

Note: The factorization of *A* into elementary matrices is *not unique*, since a different choice of elementary row operations will result in a different factorization.

Solving Invertible Square Equations

Theorem: If *A* is an invertible $n \times n$ matrix, then the system:

$$
A\vec{x} = \vec{b}
$$

has exactly one solution for any $n\times 1$ matrix \vec{b} , namely:

$$
\vec{x} = A^{-1}\vec{b}.
$$

More generally, if C is any $n \times m$ matrix, then the matrix equation:

$$
AB=C
$$

has exactly one solution for the $n \times m$ matrix *B*, namely:

$$
B=A^{-1}C
$$