2.8 Consequences of Invertibility

Theorem — The Really Big Theorem on Invertibility:

The following conditions are equivalent for a linear operator $T: \mathbb{R}^n \to \mathbb{R}^n$, with standard matrix $[T] = A$:

- 1. *T* is an invertible operator.
- 2. *A* is an invertible matrix.
- 3. The rref of *A* is *In*.
- 4. *A* is the product of elementary matrices.
- 5. *T* is one-to-one.
- 6. $ker(T) = nullspace(A) = \{ \overrightarrow{0}_n \}.$
- 7. $nullity(T) = nullity(A) = 0.$
- 8. *T* is onto.
- 9. $range(T) = \mathbb{R}^n$.
- 10. $rank(T) = n$.

11. $colspace(A) = \mathbb{R}^n$.

12. The columns of *A* are linearly independent.

- 13. The columns of A Span \mathbb{R}^n .
- 14. The columns of *A* form a basis for \mathbb{R}^n .
- 15. *rowspace* $(A) = \mathbb{R}^n$.
- 16. The rows of *A* are linearly independent.
- 17. The rows of A Span \mathbb{R}^n .
- 18. The rows of *A* form a basis for \mathbb{R}^n .

19. The homogeneous equation $A\vec{x} = \vec{0}_n$ has only the trivial solution.

20. For every $n \times 1$ matrix \vec{b} , the system $A\vec{x} = \vec{b}$ is *consistent*.

21. *For every* $n \times 1$ matrix \vec{b} , the system $A\vec{x} = \vec{b}$ has *exactly one solution*.

22. *There exists* an $n \times 1$ matrix \vec{b} , such that the system $A\vec{x} = \vec{b}$ has *exactly one solution*.

One Sided Inverses

Given *A*, we must find *B* so that:

$AB = I_n$ and $BA = I_n$

If *B* only satisfies the first equation, we call *B* a "right" inverse for *A*.

If *B* only satisfies the second equation we call *B* a "left" inverse for *A*.

Luckily, there' s no need for this nonsense:

Theorem: An $n \times n$ matrix *A* is invertible if and only if we can find an $n \times n$ matrix *B* such that $AB = I_n$ or $BA = I_n$. Thus, a "right" inverse is also a "left" inverse, and vice versa.

Proof: think of *BA* as a matrix representing the composition of two operators.

The Inverse of a Composition and Matrix Product

Theorem: If $T_1, T_2 : \mathbb{R}^n \to \mathbb{R}^n$ are both invertible operators, then $T_2 \circ T_1$ is also invertible, and furthermore:

$$
[T_2 \circ T_1]^{-1} = [T_1]^{-1} [T_2]^{-1}.
$$

Analogously, if *A* and *B* are invertible $n \times n$ matrices, then *AB* is also invertible, and furthermore:

$$
(AB)^{-1} = B^{-1}A^{-1}.
$$

The converse is also true!

Theorem: If $T_1, T_2 : \mathbb{R}^n \to \mathbb{R}^n$ are operators and the *composition* $T_2 \circ T_1$ is *invertible*, then *both* T_2 and T_1 are also invertible. Analogously if *A* and *B* are two *n n* matrices and the *product AB* is *invertible*, then *both A* and *B* are invertible.