3.1 Axioms for a Vector Space

Definition — The Axioms of an Abstract Vector Space: A vector space (V, \oplus, \odot) is a non-empty set *V*, together with two operations:

 \oplus (vector addition), and

 \odot (scalar multiplication),

such that: for all \vec{u} , \vec{v} and $\vec{w} \in V$ and all $r, s \in \mathbb{R}$, (V, \oplus, \odot) satisfies the following ten properties:

- 1. *The Closure Property of Vector Addition:* $\vec{u} \oplus \vec{v} \in V$
- 2. *The Closure Property of Scalar Multiplication:*

 $r \odot \vec{u} \in V$

- 3. *The Commutative Property of Vector Addition:* $\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$
- 4. *The Associative Property of Vector Addition:* $(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \vec{u} \oplus (\vec{v} \oplus \vec{w})$
- 5. *The Existence of a Zero Vector:*

There exists
$$
\overrightarrow{0}_V \in V
$$
, such
that: $\overrightarrow{0}_V \oplus \overrightarrow{v} = \overrightarrow{v} = \overrightarrow{v} \oplus \overrightarrow{0}_V$

6. *The Existence of Additive Inverses:*

There exists
$$
-\vec{v} \in V
$$
 such that:
\n $\vec{v} \oplus (-\vec{v}) = \vec{0}_V = (-\vec{v}) \oplus \vec{v}$

7. *The Distributive Property of Ordinary Addition over Scalar Multiplication:*

 $(r+s)\odot\vec{v} = (r\odot\vec{v})\oplus(s\odot\vec{v})$

8. *The Distributive Property of Vector Addition over Scalar Multiplication:*

 $r \odot (\vec{u} \oplus \vec{v}) = (r \odot \vec{u}) \oplus (r \odot \vec{v})$

- 9. *The Associative Property of Scalar Multiplication:* $r \odot (s \odot \vec{v}) = s \odot (r \odot \vec{v}) = (rs) \odot \vec{v}$
- 10. *The Unitary Property of Scalar Multiplication:* $1 \odot \vec{v} = \vec{v}$

We need *three objects,* that is, three pieces of *information* to define a vector space:

 (1) a non-empty *set V*, (*what* are the vectors)

(2) a rule for *vector addition* \oplus that tells us *how to add* two vectors to get another vector, and

 (3) a rule for *scalar multiplication* \odot that tells us *how to multiply* a real number with a vector to get another vector.

Polynomial Spaces

$$
\mathbb{P}^{n} = \{p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n \mid a_0, a_1, a_2, \dots, a_n \in \mathbb{R}\}
$$

Example: 2

$$
p(x) = 3 - 5x + 7x^{2}
$$
 and
 $q(x) = 4 - 3x^{2} \in \mathbb{P}^{2}$

$$
p(x) \oplus q(x) = (3 - 5x + 7x^{2}) + (4 - 3x^{2})
$$

= 7 - 5x + 4x², and

$$
3 \odot p(x) = 3(3 - 5x + 7x^{2})
$$

= 9 - 15x + 21x²

$$
\vec{0}_{\mathbb{P}^n} = z(x) = 0 + 0x + \dots + 0x^n
$$

- $p(x) = -a_0 - a_1x - a_2x^2 - \dots - a_nx^n$

Functions Spaces

$$
F(I) = \{ f(x) | f(a) \text{ is defined for all } a \in I \}
$$

$$
(f+g)(x) = f(x) + g(x), \text{ and}
$$

$$
(kf)(x) = k \cdot f(x)
$$

The zero vector is simply the function $z(x)$ which outputs the value 0 for all $a \in I$.

The negative of a function is simply defined by the function which outputs as its value of $-f(a)$, with input $x = a$.

How Can We Visualize Vectors?

Two Vectors, \vec{u} and \vec{v} , in \mathbb{R}^2

Three Vectors, $\vec{u},\,\vec{v}$ and \vec{w} in \mathbb{R}^3

 \mathbb{R}^4 ??? \mathbb{P}^3 ??? $F(\mathbb{R})$??? *m n Matrices*

$$
Mat(m, n) = \{ A | A \text{ is an } m \times n \text{ matrix } \}
$$

The Smallest Example

$$
V = \left\{\stackrel{\rightarrow}{0}_V\right\}
$$

Addition? Scalar Multiplication?

We' re Not in Kansas Anymore

$$
\mathbb{R}^+ = \left\{ \vec{x} | x \in \mathbb{R}, \text{ and } x > 0 \right\},\
$$

 $\vec{x} \oplus \vec{y} = \vec{x} \vec{y}$ (ordinary multiplication)

$$
r \odot \vec{x} = \vec{x}^r
$$
 (ordinary exponentiation)
= $\overrightarrow{e^{r \ln(x)}}$

Identity element:

$$
\vec{z} \oplus \vec{y} = \vec{y}
$$

$$
\vec{z} = ???
$$

$$
\overrightarrow{0}_{\mathbb{R}^+} = ???
$$

Inverses:

$$
\vec{x} \oplus \vec{y} = \overrightarrow{0}_{\mathbb{R}^+}
$$

$$
\vec{y} = ???
$$

Last four Axioms:

$$
(r+s) \odot \vec{x} = ???
$$

$$
r \odot (\vec{x} \oplus \vec{y}) = ???
$$

$$
(rs) \odot \vec{x} = ???
$$

$$
1 \odot \vec{x} = ???
$$

Additional Properties of Vector Spaces

Theorem — The Uniqueness of the Zero Vector: The *zero vector* $\vec{0}_V$ of any vector space (V, \oplus, \odot) is *unique*. This means that if $\vec{z} \in V$ is another vector that satisfies: $\vec{z} \oplus \vec{v} = \vec{v}$ for *all* $\vec{v} \in V$, then we must have: $\vec{z} = \vec{0}_V$.

Theorem — The Uniqueness of Additive Inverses:

The *additive inverse* $-\vec{v}$ of any vector $\vec{v} \in V$ in a vector space (V, \oplus, \odot) is *unique*. This means that if $\vec{n} \in V$ is another vector that satisfies: $\vec{v} \oplus \vec{n} = \vec{0}_V$, then we must have: $\vec{n} = -\vec{v}$. As a further consequence: $-\vec{v} = -1 \odot \vec{v}$.

Theorem — The Multiplicative Properties of Zeroes:

Let (V, \oplus, \odot) be a vector space, with zero vector $\overrightarrow{0}_V$. Then we have the following properties:

1. *The Multiplicative Property of the Scalar Zero:*

 $0 \odot \vec{v} = \vec{0}_V$ for all $\vec{v} \in V$.

- 2. *The Multiplicative Property of the Zero Vector:* $r \odot \vec{0}_V = \vec{0}_V$ for all $r \in \mathbb{R}$.
- 3. The Zero-Factors Theorem: For all $\vec{v} \in V$ and $r \in \mathbb{R}$: $r \odot \vec{v} = \vec{0}_V$ *if and only if* either $r = 0$ or $\vec{v} = \vec{0}_V$.

Definition — Axiom for Parallel Vectors:

Let (V, \oplus, \odot) be a vector space, and let $\vec{u}, \vec{v} \in V$. We say that \vec{u} and \vec{v} are *parallel to each other* if there exists either $a \in \mathbb{R}$ or $b \in \mathbb{R}$ such that:

$$
\vec{u} = a \odot \vec{v} \quad or \quad \vec{v} = b \odot \vec{u}.
$$

Consequently, this means that **0** $\vec{0}$ *v* is parallel to *all* vectors $\vec{v} \in V$, since **0** $\overrightarrow{\mathbf{0}}_V = 0 \odot \overrightarrow{v}$.

Things Don't Always Work Out

Example: Suppose $V = Mat(2, 3)$, with vector addition defined as matrix addition, as before.

However, we will define scalar multiplication by:

$$
r \odot A = r \odot \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{2,1} & a_{2,2} & ra_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix}
$$

Do the Distributive Properties still hold?

Example: Suppose we let $V = \mathbb{R}^2$, but with addition defined by: $\langle x_1, y_1 \rangle \oplus \langle x_2, y_2 \rangle = \langle 2x_1 + 2x_2, y_1 + y_2 \rangle.$

Scalar multiplication: same as before.

Is there a zero vector?

Does a vector have a negative?