# 3.1 Axioms for a Vector Space

# Definition — The Axioms of an Abstract Vector Space:

A vector space  $(V, \oplus, \odot)$  is a non-empty set V, together with two operations:

- ⊕ (vector addition), and
- ⊙ (scalar multiplication),

such that: for all  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w} \in V$  and all r,  $s \in \mathbb{R}$ ,  $(V, \oplus, \odot)$  satisfies the following ten properties:

1. The Closure Property of Vector Addition:

$$\vec{u} \oplus \vec{v} \in V$$

2. The Closure Property of Scalar Multiplication:

$$r \odot \overrightarrow{u} \in V$$

3. The Commutative Property of Vector Addition:

$$\vec{u} \oplus \vec{v} = \vec{v} \oplus \vec{u}$$

4. The Associative Property of Vector Addition:

$$(\vec{u} \oplus \vec{v}) \oplus \vec{w} = \vec{u} \oplus (\vec{v} \oplus \vec{w})$$

5. The Existence of a Zero Vector:

There exists  $\overrightarrow{0}_V \in V$ , such

that: 
$$\overrightarrow{0}_V \oplus \overrightarrow{v} = \overrightarrow{v} = \overrightarrow{v} \oplus \overrightarrow{0}_V$$

6. The Existence of Additive Inverses:

There exists  $-\overrightarrow{v} \in V$  such that:

$$\vec{v} \oplus (-\vec{v}) = \vec{0}_V = (-\vec{v}) \oplus \vec{v}$$

7. The Distributive Property of Ordinary Addition over Scalar Multiplication:

$$(r+s)\odot \overrightarrow{v}=(r\odot \overrightarrow{v})\oplus (s\odot \overrightarrow{v})$$

8. The Distributive Property of Vector Addition over Scalar Multiplication:

$$r \odot (\vec{u} \oplus \vec{v}) = (r \odot \vec{u}) \oplus (r \odot \vec{v})$$

9. The Associative Property of Scalar Multiplication:

$$r \odot (s \odot \overrightarrow{v}) = s \odot (r \odot \overrightarrow{v}) = (rs) \odot \overrightarrow{v}$$

10. The Unitary Property of Scalar Multiplication:

$$1 \odot \overrightarrow{v} = \overrightarrow{v}$$

We need *three objects*, that is, three pieces of *information* to define a vector space:

- (1) a non-empty set V,(what are the vectors)
- (2) a rule for *vector addition*  $\oplus$  that tells us *how to add* two vectors to get another vector, and
- (3) a rule for *scalar multiplication*  $\odot$  that tells us *how to multiply* a real number with a vector to get another vector.

#### Polynomial Spaces

$$\mathbb{P}^{n} = \{ p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \mid a_0, a_1, a_2, \dots, a_n \in \mathbb{R} \}$$

# *Example:* $\mathbb{P}^2$

$$p(x) = 3 - 5x + 7x^2$$
 and  $q(x) = 4 - 3x^2 \in \mathbb{P}^2$ 

$$p(x) \oplus q(x) = (3 - 5x + 7x^{2}) + (4 - 3x^{2})$$

$$= 7 - 5x + 4x^{2}, \text{ and}$$

$$3 \odot p(x) = 3(3 - 5x + 7x^{2})$$

$$= 9 - 15x + 21x^{2}$$

$$\vec{0}_{\mathbb{P}^n} = z(x) = 0 + 0x + \dots + 0x^n$$

$$-p(x) = -a_0 - a_1x - a_2x^2 - \dots - a_nx^n$$

#### Functions Spaces

$$F(I) = \{ f(x) | f(a) \text{ is defined for all } a \in I \}$$

$$(f+g)(x) = f(x) + g(x), \text{ and}$$
$$(kf)(x) = k \cdot f(x)$$

The zero vector is simply the function z(x) which outputs the value 0 for all  $a \in I$ .

The negative of a function is simply defined by the function which outputs as its value of -f(a), with input x = a.

#### How Can We Visualize Vectors?



Two Vectors,  $\vec{u}$  and  $\vec{v}$ , in  $\mathbb{R}^2$ 



Three Vectors,  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  in  $\mathbb{R}^3$ 

 $\mathbb{R}^4$ ???

 $\mathbb{P}^{3}???$ 

 $F(\mathbb{R})???$ 

m × n Matrices

$$Mat(m, n) = \{A | A \text{ is an } m \times n \text{ matrix } \}$$

# The Smallest Example

$$V = \left\{ \overrightarrow{0}_{V} \right\}$$

Addition? Scalar Multiplication?

#### We're Not in Kansas Anymore

$$\mathbb{R}^+ = \left\{ \vec{x} | x \in \mathbb{R}, \text{ and } x > 0 \right\},\,$$

$$\vec{x} \oplus \vec{y} = \vec{x}\vec{y}$$
 (ordinary multiplication)

$$r \odot \overrightarrow{x} = \overrightarrow{x^r}$$
 (ordinary exponentiation)
$$= \overrightarrow{e^{r \ln(x)}}$$

# Identity element:

$$\vec{z} \oplus \vec{y} = \vec{y}$$
$$\vec{z} = ???$$

$$\overrightarrow{0}_{\mathbb{R}^+} = ???$$

Inverses:

$$\vec{x} \oplus \vec{y} = \vec{0}_{\mathbb{R}^+}$$
$$\vec{y} = ???$$

#### Last four Axioms:

$$(r+s) \odot \vec{x} = ???$$
  
 $r \odot (\vec{x} \oplus \vec{y}) = ???$   
 $(rs) \odot \vec{x} = ???$   
 $1 \odot \vec{x} = ???$ 

## Additional Properties of Vector Spaces

## Theorem — The Uniqueness of the Zero Vector:

The **zero vector**  $\vec{0}_V$  of any vector space  $(V, \oplus, \odot)$  is **unique**. This means that if  $\vec{z} \in V$  is another vector that satisfies:  $\vec{z} \oplus \vec{v} = \vec{v}$  for **all**  $\vec{v} \in V$ , then we must have:  $\vec{z} = \vec{0}_V$ .

## Theorem — The Uniqueness of Additive Inverses:

The *additive inverse*  $-\vec{v}$  of any vector  $\vec{v} \in V$  in a vector space  $(V, \oplus, \odot)$  is *unique*. This means that if  $\vec{n} \in V$  is another vector that satisfies:  $\vec{v} \oplus \vec{n} = \vec{0}_V$ , then we must have:  $\vec{n} = -\vec{v}$ .

As a further consequence:  $-\vec{v} = -1 \odot \vec{v}$ .

# Theorem — The Multiplicative Properties of Zeroes:

Let  $(V, \oplus, \odot)$  be a vector space, with zero vector  $\overrightarrow{0}_V$ . Then we have the following properties:

1. The Multiplicative Property of the Scalar Zero:

$$0 \odot \vec{v} = \vec{0}_V \text{ for all } \vec{v} \in V.$$

2. The Multiplicative Property of the Zero Vector:

$$r \odot \vec{0}_V = \vec{0}_V$$
 for all  $r \in \mathbb{R}$ .

3. The Zero-Factors Theorem: For all  $\vec{v} \in V$  and  $r \in \mathbb{R}$ :

$$r \odot \vec{v} = \vec{0}_V$$
 if and only if either  $r = 0$  or  $\vec{v} = \vec{0}_V$ .

# Definition — Axiom for Parallel Vectors:

Let  $(V, \oplus, \odot)$  be a vector space, and let  $\overrightarrow{u}$ ,  $\overrightarrow{v} \in V$ . We say that  $\overrightarrow{u}$  and  $\overrightarrow{v}$  are *parallel to each other* if there exists either  $a \in \mathbb{R}$  or  $b \in \mathbb{R}$  such that:

$$\overrightarrow{u} = a \odot \overrightarrow{v} \quad or \quad \overrightarrow{v} = b \odot \overrightarrow{u}.$$

Consequently, this means that  $\vec{\mathbf{0}}_V$  is parallel to **all** vectors  $\vec{v} \in V$ , since  $\vec{\mathbf{0}}_V = 0 \odot \vec{v}$ .

14

#### Things Don't Always Work Out

*Example:* Suppose V = Mat(2,3), with vector addition defined as matrix addition, as before.

However, we will define scalar multiplication by:

$$r \odot A = r \odot \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix}$$
$$= \begin{bmatrix} ra_{1,1} & ra_{1,2} & ra_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix}$$

Do the Distributive Properties still hold?

*Example:* Suppose we let  $V = \mathbb{R}^2$ , but with addition defined by:

$$\langle x_1, y_1 \rangle \oplus \langle x_2, y_2 \rangle = \langle 2x_1 + 2x_2, y_1 + y_2 \rangle.$$

Scalar multiplication: same as before.

Is there a zero vector?

Does a vector have a negative?