
3.2 Linearity Properties for Finite Sets of
Vectors

Linear Combinations and Spans of Finite Sets of Vectors

Definition: Let S  v1, v2, . . . , vn be a set of vectors from a
vector space V,,, and
let r1, r2, . . . , rn  . Then, a linear combination of the vectors
v1, v2, . . . , vn with

coefficients r1, r2, . . . , rn is an expression of the form:

r1  v1   r2  v2    rn  vn .

Similarly, the Span of the set of vectors S  v1, v2, . . . , vn is the
set of all possible linear combinations of these vectors:

SpanS  Spanv1, v2, . . . , vn

 r1  v1   r2  v2    rn  vn  |

r1, r2, . . . , rn  . 
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Example: The vector space n consists of all polynomials of degree
at most n.
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Membership in A Span

A useful theorem:

Theorem — The Fundamental Theorem of Algebra:
Every non-constant polynomial px (that is, of degree n  1),
with complex (or possibly real) coefficients, has exactly n complex
roots, counting multiplicities.
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Consequence:

Theorem — Equality of Polynomials: Suppose that:

px  c0  c1x  c2x2   cnxn and

qx  d0  d1x  d2x2   dnxn.

Then, as functions, px  qx (i.e. the graphs of the two
functions are the same) if and only if c0  d0, c1  d1, ,
cn  dn.

Note: We say that px  qx as functions if the values of the
two functions agree for all real numbers a  , that is:

pa  qa for all a  .

In other words, they have the same graph.
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Example: Consider the set S of polynomials from 3:

S 
4x3  7x2  5x  6, 2x3  3x2  7x  3,

10x3  19x2  x  15

Let px  2x3  6x2  20x  3.

Decide whether or not px is a member of SpanS.
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Linear Independence of a Finite Set of Vectors

Definition: Let S  v1, v2, . . . , vn be a set of vectors from a
vector space V,,. We say that S is linearly independent if
and only if the only solution to the equation:

c1  v1   c2  v2    cn  vn   0 V

is the trivial solution c1  0, c2  0, . . . , cn  0. As before, we
will refer to this equation as a dependence test equation and
sometimes just say “independent” to mean linearly independent.
The opposite of being linearly independent is being linearly
dependent, which means there is a non-trivial solution to the
dependence test equation, that is, where at least one c i is non-zero.
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Theorem: Let V,, be a vector space, and v  V. Then
S  v is linearly independent if and only if v  0V.

Theorem: Let V,, be a vector space, and v1, v2  V. Then
S  v1, v2 is linearly independent if and only if v1 is not
parallel to v2.

Theorem: Let S  v1, v2, . . . , vn be a set of vectors from a
vector space V,,. Then: S is linearly dependent if and only
if at least one vector (which, without loss of generality, we can set
to be v1 is a linear combination of v2, v3, . . . , vn, that is:

v1  r2  v2  r3  v3   rn  vn,
for some scalars r2, r3, , rn  .
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A Sufficient Test for Independence of Sets of Polynomials

Theorem: Suppose S  p1x, p2x, . . . , pkx is a set of
polynomials from n with distinct degrees. Then S is linearly
independent. In particular, the set 1, x, x2,  , xn is linearly
independent.
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Example: Consider the set S  e2x, ex, e5x.

Generalization:

Theorem: Suppose S  ek1x, ek2x, . . . , eknx,
where k1  k2    kn are n distinct real numbers.
Then: S is linearly independent.
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