3.2 Linearity Properties for Finite Sets of Vectors

Linear Combinations and Spans of Finite Sets of Vectors

Definition: Let $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ be a set of vectors from a vector space (V, \oplus, \odot) , and

let r_1 , r_2 ,..., $r_n \in \mathbb{R}$. Then, a *linear combination* of the vectors \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_n with

coefficients r_1 , r_2 , ..., r_n is an expression of the form:

$$
(r_1 \odot \vec{v}_1) \oplus (r_2 \odot \vec{v}_2) \oplus \cdots \oplus (r_n \odot \vec{v}_n).
$$

Similarly, the *Span* of the set of vectors $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ is the set of *all possible linear combinations* of these vectors:

$$
Span(S) = Span(\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\})
$$

= $\{(r_1 \odot \vec{v}_1) \oplus (r_2 \odot \vec{v}_2) \oplus \cdots \oplus (r_n \odot \vec{v}_n) |$
 $r_1, r_2, ..., r_n \in \mathbb{R}.\}$

Example: The vector space \mathbb{P}^n consists of all polynomials of degree at most *n*.

Membership in A Span

A useful theorem:

Theorem — The Fundamental Theorem of Algebra:

Every non-constant polynomial $p(x)$ (that is, of degree $n \ge 1$), with complex (or possibly real) coefficients, has exactly *n* complex roots, counting multiplicities.

Consequence:

Theorem — Equality of Polynomials: Suppose that:
\n
$$
p(x) = c_0 + c_1x + c_2x^2 + \dots + c_nx^n
$$
\nand
\n
$$
q(x) = d_0 + d_1x + d_2x^2 + \dots + d_nx^n.
$$
\nThen, as functions, $p(x) = q(x)$ (i.e., the graphs of the two

functions, $p(x) = q(x)$ (i.e. the graphs functions are the same) *if and only if* $c_0 = d_0$, $c_1 = d_1$, ..., $c_n = d_n$.

Note: We say that $p(x) = q(x)$ as functions if the values of the two functions agree for all real numbers $a \in \mathbb{R}$, that is:

$$
p(a) = q(a) \text{ for all } a \in \mathbb{R}.
$$

In other words, they have the same *graph*.

Example: Consider the set *S* of polynomials from \mathbb{P}^3 :

$$
S = \begin{cases} 4x^3 - 7x^2 - 5x + 6, 2x^3 - 3x^2 - 7x + 3, \\ 10x^3 - 19x^2 + x + 15 \end{cases}
$$

Let $p(x) = 2x^3 - 6x^2 + 20x + 3$.

Decide whether or not $p(x)$ is a member of $Span(S)$.

Linear Independence of a Finite Set of Vectors

Definition: Let $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ be a set of vectors from a vector space (V, \oplus, \odot) . We say that *S* is *linearly independent* if and only if the only solution to the equation:

 $(c_1 \odot \vec{v}_1) \oplus (c_2 \odot \vec{v}_2) \oplus \cdots \oplus (c_n \odot \vec{v}_n) = 0$

is the trivial solution $c_1 = 0, c_2 = 0, \ldots, c_n = 0$. As before, we will refer to this equation as a *dependence test equation* and sometimes just say "independent" to mean linearly independent. The opposite of being linearly independent is being linearly dependent, which means there is a non-trivial solution to the dependence test equation, that is, where at least one *cⁱ* is non-zero.

Theorem: Let (V, \oplus, \odot) be a vector space, and $\vec{v} \in V$. Then $S = \{\vec{v}\}$ is linearly independent *if and only if* $\vec{v} \neq \vec{0}_V$.

Theorem: Let (V, \oplus, \odot) be a vector space, and $\vec{v}_1, \vec{v}_2 \in V$. Then $S = \{\vec{v}_1, \vec{v}_2\}$ is linearly independent *if and only if* \vec{v}_1 is not parallel to \vec{v}_2 .

Theorem: Let $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ be a set of vectors from a vector space (V, \oplus, \odot) . Then: *S* is linearly *dependent if and only if* at least one vector (which, without loss of generality, we can set to be \vec{v}_1) is a linear combination of \vec{v}_2 , \vec{v}_3 , ..., \vec{v}_n , that is:

 $\vec{v}_1 = (r_2 \odot \vec{v}_2) \oplus (r_3 \odot \vec{v}_3) \oplus \cdots \oplus (r_n \odot \vec{v}_n),$

for some scalars r_2 , r_3 , ..., $r_n \in \mathbb{R}$.

A Sufficient Test for Independence of Sets of Polynomials

Theorem: Suppose $S = \{p_1(x), p_2(x), ..., p_k(x)\}$ is a set of polynomials from \mathbb{P}^n with *distinct* degrees. Then *S* is linearly independent. In particular, the set $\{1, x, x^2, ..., x^n\}$ is linearly independent.

Example: Consider the set $S = \{e^{-2x}, e^x, e^{5x}\}.$

Generalization:

Theorem: Suppose $S = \{e^{k_1x}, e^{k_2x}, \ldots, e^{k_nx}\},$ where $k_1 < k_2 < \cdots < k_n$ are *n* **distinct** real numbers. Then: *S* is linearly independent.