3.6 Coordinate Vectors and Matrices for Linear Transformations

Definition: Let $B = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_n\}$ be an *ordered basis* for a finite dimensional vector space *V*. If \vec{v} is any vector in *V*, we know that \vec{v} can be expressed *uniquely* as a linear combination of the vectors of *B* :

$$
\vec{v} = c_1 \vec{w}_1 + c_2 \vec{w}_2 + \cdots + c_n \vec{w}_n.
$$

We call the vector $\langle c_1, c_2, \ldots, c_n \rangle$ the *coordinate vector of* \vec{v} *with respect to B*, written as:

$$
\big\langle \vec{v} \big\rangle_B = \big\langle c_1, c_2, \ldots, c_n \big\rangle.
$$

The $n \times 1$ matrix corresponding to $\langle \vec{v} \rangle_B$ is called the *coordinate matrix of* \vec{v} *with respect to B*, written as:

$$
\left[\vec{v}\right]_B = \left[\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_n \end{array}\right].
$$

Example:

Let $B = \{\langle -1, 0, 1 \rangle, \langle 1, 1, -1 \rangle, \langle 0, -1, -1 \rangle\},\$ $\vec{\nu} = \langle 7,-3,-2 \rangle.$

Find $\left[\vec{v}\right]_B$.

Theorem: For any ordered basis $B = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_n\}$ of an *n* -dimensional vector space *V*, the function $T: V \to \mathbb{R}^n$ given by: $T(\vec{v}) = \langle \vec{v} \rangle_B$

is a *linear transformation*. In particular, if $V = \mathbb{R}^n$ and B is a basis for \mathbb{R}^n , then *T* is in fact one-to-one and onto, i.e., an *isomorphism* $of \mathbb{R}^n$.

Proof: Suppose that

$$
\langle \vec{u} \rangle_B = \langle c_1, c_2, ..., c_n \rangle
$$
, and
 $\langle \vec{v} \rangle_B = \langle d_1, d_2, ..., d_n \rangle$.

These mean that:

Coordinates for \mathbb{P}^n

Let $p(x) = 5x^2 - 3x + 7$. Find $[p(x)]_B$, where:

- a) $B = \{1, x, x^2\}.$
- b) $B = \{x^2 5, x + 2, x 1\}.$

Coordinate Vectors $for W = Span(B)$

Example: Consider $B = \{ \sin(x), \cos(x) \}$ and $W = Span(B)$. Find $[f(x)]_B$, for the following functions:

$$
a) f(x) = 5 \sin(x) - 8 \cos(x)
$$

b)
$$
f(x) = \sin\left(x + \frac{\pi}{4}\right)
$$

c)
$$
f(x) = cos(x + sin^{-1}(3/5))
$$

Constructing A Matrix For T

Definition/Theorem: Let $T: V \rightarrow W$ be a linear transformation, where $dim(V) = n$ and $dim(W) = m$. Let $B = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ be a basis for *V*, and let $B' = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_m\}$ be a basis for *W*. The $m \times n$ matrix $[T]_{B,B}$, given by:

$$
[T]_{B,B'} = [[T(\vec{v}_1)]_{B'} | [T(\vec{v}_2)]_{B'} | \cdots | [T(\vec{v}_n)]_{B'}],
$$

is called *the matrix of T relative to B and B* / . For any $\vec{v} \in V$, we can compute $T(\vec{v})$ via:

$$
[T(\vec{v})]_{B'} = [T]_{B,B'}[\vec{v}]_{B}.
$$

If $T: V \rightarrow V$ is an *operator* and we use the same basis *B* for the domain and codomain (that is, $B = B'$), we simply write $[T]_B$ instead of $[T]_{B,B}$.

How to Use the Matrix for T

ENCODE :

Given $\vec{v} \in V$, find $[\vec{v}]_B \in \mathbb{R}^n$.

MULTIPLY :

Compute the product $[T]_{B,B}$ ^{$\left[\vec{v}\right]_B = [T(\vec{v})]_{B'} \in \mathbb{R}^m$.}

DECODE :

Use the coefficients of $\left[T(\vec{v})\right]_{B'}$ and the basis B' to explicitly find $T(\vec{v}) \in W$.

Example: Let $T: \mathbb{P}^3 \to \mathbb{P}^2$ be the operator given by: $T(p(x)) = 3p'(x) + 7xp''(x) + p(-1) \cdot x^2$.

Warm-up: Compute $T(2 + 8x - 5x^2 + 4x^3)$

Explain why $T(p(x)) \in \mathbb{P}^2$ for any $p(x) \in \mathbb{P}^3$.

Prove that *T* is indeed a linear transformation.

Let $B = \{1, x, x^2, x^3\}$ be the standard basis for \mathbb{P}^3 , and $B' = \{1, x, x^2\}$ the standard basis for $\mathbb{P}^2.$

Find $[T]_{B,B}$ ^{\prime}.

Recompute $T(2 + 8x - 5x^2 + 4x^3)$ using $[T]_{B,B}$.

Example: Let us suppose that we are given a linear transformation $T: \mathbb{P}^2 \to \mathbb{P}^1$, with matrix:

$$
[T]_{B,B'} = \left[\begin{array}{rrr} 2 & -3 & 5 \\ 4 & 1 & -2 \end{array} \right],
$$

where $B = \{x^2 + 5, x - 2, 1\}$ and $B' = \{x + 1, x - 1\}.$

Find $T(7x^2 + 4x - 8)$.

Function Spaces Preserved by the Derivative

Example: Find the matrix of the derivative operator *D* applied to the function space:

$$
V = Span(\{x^2e^{4x}, xe^{4x}, e^{4x}\})
$$

Revisiting Projections

Example: Suppose that Π is the plane with equation: $5x + 2y - 6z = 0.$

Find $[proj_{II}]$.