3.6 Coordinate Vectors and Matrices for Linear Transformations

Definition: Let $B = {\vec{w}_1, \vec{w}_2, ..., \vec{w}_n}$ be an **ordered basis** for a finite dimensional vector space V. If \vec{v} is any vector in V, we know that \vec{v} can be expressed **uniquely** as a linear combination of the vectors of B :

$$\vec{v} = c_1 \vec{w}_1 + c_2 \vec{w}_2 + \dots + c_n \vec{w}_n.$$

We call the vector $\langle c_1, c_2, ..., c_n \rangle$ the *coordinate vector of* \vec{v} *with respect to* B, written as:

$$\langle \vec{v} \rangle_B = \langle c_1, c_2, \ldots, c_n \rangle.$$

The $n \times 1$ matrix corresponding to $\langle \vec{v} \rangle_B$ is called the *coordinate matrix of* \vec{v} with respect to B, written as:

$$\begin{bmatrix} \vec{v} \end{bmatrix}_B = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

Example:

Let $B = \{\langle -1, 0, 1 \rangle, \langle 1, 1, -1 \rangle, \langle 0, -1, -1 \rangle \},\$ $\vec{v} = \langle 7, -3, -2 \rangle.$

Find $[\vec{v}]_B$.

Theorem: For any ordered basis $B = {\vec{w}_1, \vec{w}_2, ..., \vec{w}_n}$ of an *n*-dimensional vector space *V*, the function $T : V \to \mathbb{R}^n$ given by: $T(\vec{v}) = \langle \vec{v} \rangle_R$

is a *linear transformation*. In particular, if $V = \mathbb{R}^n$ and B is a basis for \mathbb{R}^n , then T is in fact one-to-one and onto, i.e., an *isomorphism* of \mathbb{R}^n .

Proof: Suppose that $\langle \vec{u} \rangle_B = \langle c_1, c_2, \dots, c_n \rangle$, and $\langle \vec{v} \rangle_B = \langle d_1, d_2, \dots, d_n \rangle$.

These mean that:

Coordinates for \mathbb{P}^n

Let $p(x) = 5x^2 - 3x + 7$. Find $[p(x)]_B$, where:

- a) $B = \{1, x, x^2\}.$
- b) $B = \{x^2 5, x + 2, x 1\}.$

Coordinate Vectors for W = Span(B)

Example: Consider $B = \{ sin(x), cos(x) \}$ and W = Span(B). Find $[f(x)]_B$, for the following functions:

$$a) f(x) = 5\sin(x) - 8\cos(x)$$

b)
$$f(x) = \sin\left(x + \frac{\pi}{4}\right)$$

c) $f(x) = \cos(x + \sin^{-1}(3/5))$

Constructing A Matrix For T

Definition/Theorem: Let $T: V \to W$ be a linear transformation, where dim(V) = n and dim(W) = m. Let $B = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_n}$ be a basis for V, and let $B' = {\vec{w}_1, \vec{w}_2, ..., \vec{w}_m}$ be a basis for W. The $m \times n$ matrix $[T]_{B,B'}$, given by:

$$[T]_{B,B'} = \left[[T(\vec{v}_1)]_{B'} \mid [T(\vec{v}_2)]_{B'} \mid \cdots \mid [T(\vec{v}_n)]_{B'} \right],$$

is called *the matrix of T relative to B and* B'. For any $\vec{v} \in V$, we can compute $T(\vec{v})$ via:

$$[T(\vec{v})]_{B'} = [T]_{B,B'} [\vec{v}]_{B}.$$

If $T: V \to V$ is an *operator* and we use the same basis B for the domain and codomain (that is, $B = B^{/}$), we simply write $[T]_B$ instead of $[T]_{B,B}$.

How to Use the Matrix for T

ENCODE:

Given $\vec{v} \in V$, find $[\vec{v}]_B \in \mathbb{R}^n$.

MULTIPLY:

Compute the product $[T]_{B,B'}[\vec{v}]_B = [T(\vec{v})]_{B'} \in \mathbb{R}^m$.

DECODE :

Use the coefficients of $[T(\vec{v})]_{B'}$ and the basis B' to explicitly find $T(\vec{v}) \in W$.

Example: Let $T : \mathbb{P}^3 \to \mathbb{P}^2$ be the operator given by: $T(p(x)) = 3p'(x) + 7xp''(x) + p(-1) \cdot x^2.$

Warm-up: Compute $T(2 + 8x - 5x^2 + 4x^3)$

Explain why $T(p(x)) \in \mathbb{P}^2$ for any $p(x) \in \mathbb{P}^3$.

Prove that T is indeed a linear transformation.

Let $B = \{1, x, x^2, x^3\}$ be the standard basis for \mathbb{P}^3 , and $B' = \{1, x, x^2\}$ the standard basis for \mathbb{P}^2 .

Find $[T]_{B,B'}$.

Recompute $T(2 + 8x - 5x^2 + 4x^3)$ using $[T]_{BB'}$

Example: Let us suppose that we are given a linear transformation $T : \mathbb{P}^2 \to \mathbb{P}^1$, with matrix:

$$[T]_{B,B'} = \begin{bmatrix} 2 & -3 & 5 \\ 4 & 1 & -2 \end{bmatrix},$$

where $B = \{x^2 + 5, x - 2, 1\}$ and $B' = \{x + 1, x - 1\}$.

Find $T(7x^2 + 4x - 8)$.

Function Spaces Preserved by the Derivative

Example: Find the matrix of the derivative operator *D* applied to the function space:

$$V = Span(\{x^2e^{4x}, xe^{4x}, e^{4x}\})$$

Revisiting Projections

Example: Suppose that Π is the plane with equation: 5x + 2y - 6z = 0.

Find [$proj_{\Pi}$].