6.1 Eigentheory of Matrices

Definition: Let *A* be an $n \times n$ matrix. We say that $\lambda \in \mathbb{R}$ (the Greek letter *lambda*) is an *eigenvalue* of *A*, and a *non-zero* vector $\vec{v} \in \mathbb{R}^n$ is an *eigenvector* for *A* associated to λ , or simply an eigenvector for λ , if:

$$
\overrightarrow{Av}=\lambda \overrightarrow{v}.
$$

In other words, if $T: \mathbb{R}^n \to \mathbb{R}^n$, with $[T] = A$, then $T(\vec{v})$ is *parallel* to \vec{v} :

How do we Find Eigenvalues and Eigenvectors?

$$
A\vec{v}=\lambda\vec{v}=(\lambda I_n)(\vec{v})
$$

$$
(\lambda I_n)(\vec{v}) - A\vec{v} = \vec{0}_n
$$

$$
(\lambda I_n - A)\vec{v} = \vec{0}_n
$$

Definition/Theorem: Let *A* be an $n \times n$ matrix. Then we can find a real number λ and a non-zero vector $\vec{v} \in \mathbb{R}^n$ such that:

$$
A\vec{v} = \lambda \vec{v}
$$

if and only if $det(\lambda I_n - A) = 0$ *.*

The equation above is called the *characteristic equation* of the matrix *A*.

The determinant in this equation is a polynomial whose highest term is λ^n , and it is called the *characteristic polynomial* of A, denoted $p_A(\lambda)$, or $p(\lambda)$:

 $p_A(\lambda) = p(\lambda) = det(\lambda I_n - A).$

The *highest term* comes from:

$$
sgn(\sigma)(\lambda-a_{1,1})\cdot (\lambda-a_{2,2})\cdot \cdots \cdot (\lambda-a_{n,n})
$$

But for this term, $\sigma = (1, 2, ..., n)$

 $sgn(\sigma) = 1$.

Possibilities for 2 2 *Matrices*

Suppose *A* has integer or rational entries only.

The quadratic characteristic polynomial will have integer or rational coefficients.

It can have:

two distinct roots, (if the discriminant is not 0) or

a *single* (repeated or double) root (if the discriminant is 0).

If the roots are *distinct*, then they could be:

- *imaginary*, (if the discriminant is negative)
- *irrational*, (if the discriminant is a positive non-square)
- *integer* or *rational*, (if the discriminant is a positive perfect square)

Example:

$$
\left[\begin{array}{cc}285&504\\-160&-283\end{array}\right]
$$

Eigenspaces

Definition/Theorem — Eigenspaces:

Let *A* be an $n \times n$ matrix and $\lambda \in \mathbb{R}$. We define the *eigenspace* of *A* associated to λ , denoted $Eig(A, \lambda)$, to be:

$$
Eig(A,\lambda) = \{\vec{v} \in \mathbb{R}^n | A\vec{v} = \lambda \vec{v} \}.
$$

Notice that $\overrightarrow{A0}_n = \overrightarrow{0}_n = \lambda \overrightarrow{0}_n$, so $\overrightarrow{0}_n \in Eig(A, \lambda)$.

If λ is an actual *eigenvalue* for A , then $Eig(A, \lambda) = nullspace(A - \lambda I_n)$, which is a **non-zero subspace** of \mathbb{R}^n containing all the *eigenvectors* of A associated to λ , and thus its dimension is strictly *positive*.

If λ is *not* an eigenvalue of A , then $Eig(A, \lambda)$ consists only of $\vec{0}_n$. In this case, we can refer to $Eig(A, \lambda)$ as a *trivial eigenspace*.

Thus, we can say that λ is an *eigenvalue* of A *if and only if* the eigenspace $Eig(A, \lambda)$ is at least *1-dimensional*.

Eigentheory for Triangular Matrices

Theorem: Let *A* be an upper or lower *triangular* $n \times n$ matrix, and suppose the entries along the main diagonal are c_1 , c_2 , ..., c_n . Then: the *characteristic polynomial* of *A* is:

$$
p(\lambda)=(\lambda-c_1)(\lambda-c_2)\cdots(\lambda-c_n),
$$

and therefore the *eigenvalues* are precisely c_1 , c_2 , ..., c_n . Moreover, if:

$$
D = Diag(d_1, d_2, ..., d_n)
$$

is a *diagonal* matrix, then for every $i = 1...n$: \vec{e}_i is an *eigenvector* for d_i .

Example:

$$
\left[\begin{array}{rrr}5 & 13 & -6 \\ 0 & -2 & 3 \\ 0 & 0 & 5 \end{array}\right]
$$

Follow up: what happens if the 14 is turned into 13?