6.3 Diagonalization of Square Matrices

Definition: Let *A* be an $n \times n$ matrix. We say that *A* is *diagonalizable* if we can find an *invertible* matrix *C* such that:

$$
C^{-1}AC=D,
$$

where $D = Diag(\alpha_1, \alpha_2, ..., \alpha_n)$ is a diagonal matrix, or equivalently:

$$
AC = CD \quad \text{or} \quad A = CDC^{-1}
$$

We also say that *C diagonalizes A*.

When Can We Diagonalize?

Study:

$$
AC = CD
$$

Partition *C* into *columns*:

$$
C = \left[\begin{array}{c}\vec{v}_1 \mid \vec{v}_2 \mid \cdots \mid \vec{v}_n\end{array}\right]
$$

$$
AC = \left[\begin{array}{c}\vec{A} \vec{v}_1 \mid \vec{A} \vec{v}_2 \mid \cdots \mid \vec{A} \vec{v}_n\end{array}\right]
$$

$$
CD = \left[\begin{array}{c}\vec{a}_1 \vec{v}_1 \mid \vec{a}_2 \vec{v}_2 \mid \cdots \mid \vec{a}_n \vec{v}_n\end{array}\right]
$$

We must satisfy:

$$
\vec{AV_i} = \vec{a_i} \vec{v_i}
$$

for each column \vec{v}_i .

The Basis Test for Diagonalizability

Theorem (The Basis Test for Diagonalizability):

Let *A* be an $n \times n$ matrix. Then, *A* is diagonalizable *if and only if* we can find a *basis* for \mathbb{R}^n consisting of *n linearly independent eigenvectors* for A, say $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$. If this is the case, then the diagonalizing matrix C is simply the matrix whose *columns* are \vec{v}_1 , $\vec{v}_2,\,...,\,\vec{v}_n,$ and the diagonal matrix D contains the corresponding *eigenvalues* along the main *diagonal*.

Keep It Real

Theorem: Let *A* be an $n \times n$ matrix with imaginary eigenvalues. Then *A* is not diagonalizable over the set of *real* invertible matrices.

Independence of Eigenvectors

Theorem: Let $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ be an ordered set of eigenvectors for an $n \times n$ matrix A , and suppose that the corresponding eigenvalues λ_1 , λ_2 , ..., λ_k for these eigenvectors are all *distinct*. Then: *S* is *linearly independent*. Thus, if *A* has a total of *m* distinct eigenvalues, we can find *at least m* linearly independent eigenvectors for *A*.

Use induction on *k*.

 $k = 1$: Why is $\{\vec{\nu}_1\}$ independent?

Inductive Hypothesis: Assume $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_j\}$ is independent.

Inductive Step: Prove $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_j, \vec{v}_{j+1}\}$ is still independent:

Geometric and Algebraic Multiplicities

Definitions: Let *A* be an $n \times n$ matrix with *distinct* (possibly imaginary) eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Suppose $p(\lambda)$ factors as:

$$
p(\lambda)=(\lambda-\lambda_1)^{n_1}\boldsymbol{\cdot} (\lambda-\lambda_2)^{n_2}\boldsymbol{\cdot}\cdots\boldsymbol{\cdot} (\lambda-\lambda_k)^{n_k},
$$

where $n_1 + n_2 + \cdots + n_k = n$.

We call the exponent n_i the *algebraic multiplicity* of λ_i .

We call $dim(Eig(A, \lambda_i))$ the *geometric multiplicity* of λ_i .

We agree that $dim(Eig(A, \lambda_i)) = 0$ if λ_i is an *imaginary* eigenvalue.

A Deep Theorem from "Algebraic Geometry"

Theorem (The Geometric vs. Algebraic Multiplicity Theorem):

For any eigenvalue λ_i of an $n \times n$ matrix. A, the *geometric multiplicity* of λ_i is at most equal to the algebraic multiplicity of λ_i .

Consequently:

Theorem (The Multiplicity Test for Diagonalizability):

Let *A* be an $n \times n$ matrix. Then *A* is diagonalizable *if and only if* for all of its eigenvalues λ_i , the geometric multiplicity of λ_i is *exactly equal* to its algebraic multiplicity.

A Sure Bet

Theorem: Let *A* be an *n n* matrix with *n distinct (real) eigenvalues*. Then *A* is diagonalizable.

Powers of Diagonalizable Matrices

 $A = CDC^{-1}$

$$
A2 = (CDC-1)(CDC-1)
$$

$$
= CD(C-1C)DC-1
$$

$$
= CD2C-1
$$

$$
A^k = C D^k C^{-1}
$$