7.2 Geometric Constructions in Inner Product Spaces

Further Properties of Inner Products

Theorem: Let V be an inner product space under the bilinear form $\langle | \rangle$. Then the following properties also hold, for all vectors \vec{u} , \vec{v} and $\vec{w} \in V$:

1.
$$\langle \vec{u} | \vec{k} \cdot \vec{v} \rangle = \vec{k} \cdot \langle \vec{u} | \vec{v} \rangle$$

2. $\langle \vec{u} | \vec{v} + \vec{w} \rangle = \langle \vec{u} | \vec{v} \rangle + \langle \vec{u} | \vec{w} \rangle$
3. $\langle \vec{u} - \vec{v} |, \vec{w} \rangle = \langle \vec{u} | \vec{w} \rangle - \langle \vec{v} | \vec{w} \rangle$
4. $\langle \vec{u} | \vec{v} - \vec{w} \rangle = \langle \vec{u} | \vec{v} \rangle - \langle \vec{u} | \vec{w} \rangle$
5. $\langle \vec{u} + \vec{v} | \vec{u} + \vec{v} \rangle = \langle \vec{u} | \vec{u} \rangle + 2 \langle \vec{u} | \vec{v} \rangle + \langle \vec{v} | \vec{v} \rangle$
6. $\langle \vec{u} - \vec{v} | \vec{u} - \vec{v} \rangle = \langle \vec{u} | \vec{u} \rangle - 2 \langle \vec{u} | \vec{v} \rangle + \langle \vec{v} | \vec{v} \rangle$
7. $\langle \vec{u} + \vec{v} | \vec{u} - \vec{v} \rangle = \langle \vec{u} | \vec{u} \rangle - \langle \vec{v} | \vec{v} \rangle$
8. $\langle \vec{u} | \vec{0}_V \rangle = 0 = \langle \vec{0}_V | \vec{u} \rangle$

Norms and Distances

Definition: Let \vec{v} , $\vec{u} \in V$. Define the **norm** or the **length** of \vec{v} by:

$$\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}, \text{ in other words:}$$
$$\|\vec{v}\|^2 = \langle \vec{v} | \vec{v} \rangle$$

In particular, we say that \vec{v} is a *unit vector* if $\|\vec{v}\| = 1$. The set of all unit vectors in V is called the *unit sphere* or *unit circle* of V. We can also define the *distance* between two vectors by:

$$d(\vec{u},\vec{v}) = \|\vec{u}-\vec{v}\|$$

Unit Vectors

Some Vectors on The "Unit Circle" of \mathbb{R}^2 under $\langle \vec{u} | \vec{v} \rangle = 4u_1v_1 + 9u_2v_2$

Properties of Norms and Distances

Theorem: For all vectors \vec{u} , \vec{v} in an inner product space V, and all $k \in \mathbb{R}$:

- 1. $||k \cdot \vec{u}|| = |k| \cdot ||\vec{u}||$
- 2. $d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$
- 3. $d(k \cdot \vec{u}, k \cdot \vec{v}) = |k| \cdot d(\vec{u}, \vec{v})$

The Cauchy-Schwarz Inequality

Theorem (The Cauchy-Schwarz Inequality): For all vectors \vec{u} and \vec{v} from an inner product space V: $|\langle \vec{u} | \vec{v} \rangle| \leq ||\vec{u}|| \cdot ||\vec{v}||$ or equivalently:

$$\left\langle \vec{u} \, | \, \vec{v} \, \right\rangle^2 \leq \left\langle \vec{u} \, | \, \vec{u} \, \right\rangle \cdot \left\langle \vec{v} \, | \, \vec{v} \, \right\rangle$$

Angle Between Vectors

$$\frac{\left|\left\langle \vec{u} \mid \vec{v} \right\rangle\right|}{\left\| \vec{u} \right\| \left\| \vec{v} \right\|} \le 1$$
$$-1 \le \frac{\left\langle \vec{u} \mid \vec{v} \right\rangle}{\left\| \vec{u} \right\| \left\| \vec{v} \right\|} \le 1.$$

Define for two non-zero vectors:

$$\cos(\theta) = \frac{\left\langle \vec{u} \,|\, \vec{v} \right\rangle}{\|\vec{u}\| \|\vec{v}\|}$$

In particular, if $\cos(\theta) = 0 = \langle \vec{u} | \vec{v} \rangle$, then $\theta = \pi/2$, and we will say that \vec{u} and \vec{v} are *orthogonal* to each other.

We will agree that $\vec{0}_V$ is orthogonal to any other vector.

Definitions: If \vec{u} and \vec{v} are non-zero vectors in V, we define the **angle** between them as the angle θ , where $0 \le \theta \le \pi$, such that:

$$\cos(\theta) = \frac{\left\langle \vec{u} \,|\, \vec{v} \right\rangle}{\|\vec{u}\| \,\|\vec{v}\|}$$

Furthermore, we will say that \vec{u} is *orthogonal* to \vec{v} if and only if $\langle \vec{u} | \vec{v} \rangle = 0$. We write this symbolically as:

$$\vec{u} \perp \vec{v} \iff \langle \vec{u} \mid \vec{v} \rangle = 0.$$

In particular, $\vec{\mathbf{0}}_V$ is orthogonal to *all* vectors in *V*.

The Triangle Inequalities

Theorem (The Triangle Inequality — Norm Version): For any two vectors \vec{u} and \vec{v} in an inner product space V: $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$

Theorem: (The Triangle Inequality — Distance Version): For any three vectors \vec{u} , \vec{v} and \vec{w} in an inner product space V : $d(\vec{u}, \vec{v}) \le d(\vec{u}, \vec{w}) + d(\vec{w}, \vec{v})$

Flashback from Ancient Greece

Theorem (The Generalized Pythagorean Theorem): If \vec{u} and \vec{v} are orthogonal vectors in an inner product space V, then:

$$\|\vec{u}\|^2 + \|\vec{v}\|^2 = \|\vec{u} + \vec{v}\|^2.$$

