7.2 Geometric Constructions in Inner Product Spaces

Further Properties of Inner Products

Theorem: Let *V* be an inner product space under the bilinear form $|\ \rangle$. Then the following properties also hold, for all vectors $\vec{u},\ \vec{v}$ and $\vec{w} \in V$:

1.
$$
\langle \vec{u} | k \cdot \vec{v} \rangle = k \cdot \langle \vec{u} | \vec{v} \rangle
$$

\n2. $\langle \vec{u} | \vec{v} + \vec{w} \rangle = \langle \vec{u} | \vec{v} \rangle + \langle \vec{u} | \vec{w} \rangle$
\n3. $\langle \vec{u} - \vec{v} |, \vec{w} \rangle = \langle \vec{u} | \vec{w} \rangle - \langle \vec{v} | \vec{w} \rangle$
\n4. $\langle \vec{u} | \vec{v} - \vec{w} \rangle = \langle \vec{u} | \vec{v} \rangle - \langle \vec{u} | \vec{w} \rangle$
\n5. $\langle \vec{u} + \vec{v} | \vec{u} + \vec{v} \rangle = \langle \vec{u} | \vec{u} \rangle + 2 \langle \vec{u} | \vec{v} \rangle + \langle \vec{v} | \vec{v} \rangle$
\n6. $\langle \vec{u} - \vec{v} | \vec{u} - \vec{v} \rangle = \langle \vec{u} | \vec{u} \rangle - 2 \langle \vec{u} | \vec{v} \rangle + \langle \vec{v} | \vec{v} \rangle$
\n7. $\langle \vec{u} + \vec{v} | \vec{u} - \vec{v} \rangle = \langle \vec{u} | \vec{u} \rangle - \langle \vec{v} | \vec{v} \rangle$
\n8. $\langle \vec{u} | \vec{0} v \rangle = 0 = \langle \vec{0} v | \vec{u} \rangle$

Norms and Distances

Definition: Let \vec{v} , $\vec{u} \in V$. Define the *norm* or the *length* of \vec{v} by:

$$
\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}, \text{ in other words:}
$$

$$
\|\vec{v}\|^2 = \langle \vec{v} | \vec{v} \rangle
$$

In particular, we say that \vec{v} is a *unit vector* if $\|\vec{v}\| = 1$. The set of all unit vectors in *V* is called the *unit sphere* or *unit circle* of *V*. We can also define the *distance* between two vectors by:

$$
d(\vec{u},\vec{v}) = \|\vec{u}-\vec{v}\|
$$

Unit Vectors

Some Vectors on The "Unit Circle" of \mathbb{R}^2 under $\langle \vec{u} | \vec{v} \rangle = 4u_1v_1 + 9u_2v_2$

Properties of Norms and Distances

Theorem: For all vectors \vec{u} , \vec{v} in an inner product space V, and all $k \in \mathbb{R}$:

- 1. $\Vert k \cdot \vec{u} \Vert = \Vert k \Vert \cdot \Vert \vec{u} \Vert$
- $d(\vec{u}, \vec{v}) = d(\vec{v}, \vec{u})$
- 3. $d(k \cdot \vec{u}, k \cdot \vec{v}) = |k| \cdot d(\vec{u}, \vec{v})$

The Cauchy-Schwarz Inequality

Theorem (The Cauchy-Schwarz Inequality): For all vectors \vec{u} and \vec{v} from an inner product space V : $\left| \vec{u} \setminus \vec{v} \right| \leq \left\| \vec{u} \right\| \cdot \left\| \vec{v} \right\|$ or equivalently:

$$
\langle \vec{u} | \vec{v} \rangle^2 \leq \langle \vec{u} | \vec{u} \rangle \cdot \langle \vec{v} | \vec{v} \rangle
$$

Angle Between Vectors

$$
\frac{\left|\left\langle \vec{u} \mid \vec{v} \right\rangle\right|}{\left\|\vec{u}\right\|\left\|\vec{v}\right\|} \le 1
$$

-1 \le \frac{\left\langle \vec{u} \mid \vec{v} \right\rangle}{\left\|\vec{u}\right\|\left\|\vec{v}\right\|} \le 1.

Define for two non-zero vectors:

$$
\cos(\theta) = \frac{\left\langle \vec{u} \mid \vec{v} \right\rangle}{\|\vec{u}\| \|\vec{v}\|}
$$

In particular, if $\cos(\theta) = 0 = \langle \vec{u} | \vec{v} \rangle$, then $\theta = \pi/2$, and we will say that \vec{u} and \vec{v} are *orthogonal* to each other.

We will agree that $\vec{\bm{0}}_V$ is orthogonal to any other vector.

Definitions: If \vec{u} and \vec{v} are non-zero vectors in *V*, we define the *angle* between them as the angle θ , where $0 \le \theta \le \pi$, such that:

$$
\cos(\theta) = \frac{\left\langle \vec{u} \mid \vec{v} \right\rangle}{\|\vec{u}\| \|\vec{v}\|}
$$

Furthermore, we will say that \vec{u} is **orthogonal** to \vec{v} if and only if \vec{u} $|\vec{v}\rangle = 0$. We write this symbolically as:

$$
\vec{u} \perp \vec{v} \iff \langle \vec{u} | \vec{v} \rangle = 0.
$$

In particular, **0** $\vec{0}$ *^V* is orthogonal to *all* vectors in *V*.

The Triangle Inequalities

Theorem (The Triangle Inequality — Norm Version): For any two vectors \vec{u} and \vec{v} in an inner product space V : $\|\vec{u} + \vec{v}\| \leq \|\vec{u}\| + \|\vec{v}\|$

Theorem: (The Triangle Inequality — Distance Version): For any three vectors \vec{u},\vec{v} and \vec{w} in an inner product space V : $d(\vec{u}, \vec{v}) \leq d(\vec{u}, \vec{w}) + d(\vec{w}, \vec{v})$

Flashback from Ancient Greece

Theorem (The Generalized Pythagorean Theorem): If \vec{u} and \vec{v} are *orthogonal* vectors in an inner product space V, then:

$$
\|\vec{u}\|^2 + \|\vec{v}\|^2 = \|\vec{u} + \vec{v}\|^2.
$$

