
7.3 Orthonormal Sets and The Gram-Schmidt Algorithm

Definition: Let S  v1, v2, . . . , vk be a set of vectors in an inner
product space V. We say that S is an orthonormal set if:

vi | vj  0 if i  j, and

vi | vi  1 for i  1. . k.

If we remove the condition that each member of S must be a unit
vector but insist that all of the vectors be non-zero, we call S an
orthogonal set.
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The Orthonormal Sets in 2

v

.

.

y

x1

1

u

v   3 /2, 1/2 and u  1/2, 3 /2

More generally:

cos, sin,  sin, cos  or

cos, sin, sin, cos 
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The Orthonormal Sets in Polynomial Spaces

Consider 2 under the inner product:

px | qx  p2q2  p1q1  p3q3.

Challenge: Construct an orthonormal set which is as big as
possible.

Hint: Think of strategically located zeroes.
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Independence of Orthonormal/Orthogonal Sets

Theorem: An orthonormal set S in an inner product space V is
linearly independent.

Consequently, if dimV  n, and S  v1, v2, . . . , vk is an
orthonormal set, then k  n, and any set with more than n vectors
cannot be orthonormal.

A similar Theorem with the word “orthogonal” replacing
“orthonormal” is still true.
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Orthonormal Bases

Definition/Theorem:

Let V be a finite dimensional inner product space with
dimV  n.

An orthonormal set S  u1, u2, . . . , un with n vectors is called
an orthonormal basis for V.

If v is an arbitrary member of V, and S is an orthonormal basis for
V, and:

vS  c1, c2, . . . , cn , then:

c i  v | ui .
In other words:

v  v | u1  u1  v | u2  u2   v | un  un
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The Gram-Schmidt Algorithm

Suppose that dimV  n.

The input to the algorithm will be any basis
B  w 1, w 2,  , w n for V.

The output will be an orthogonal set:

S  v1, v2,  , vn,
with the special property that:

Spanw 1, w 2,  , w k  Spanv1, v2,  , vk

for all k  1n.
By dividing each vector by its length, we can thus obtain an
orthonormal basis for V.
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Theorem (The Gram-Schmidt Algorithm):

1. Start with any basis B  w 1, w 2, . . . , w n for V.
2. Let v1  w 1. If n  1, we are done,

otherwise proceed to Step 3:

3. Let v2  w 2 
w 2 | v1

v1 | v1
v1.

If n  2, we are done,
otherwise proceed to Step 4:

4. Let v3  w 3 
w 3 | v1

v1 | v1
v1 

w 3 | v2

v2 | v2
v2.

If n  3, we are done, otherwise for all k  3,
perform Step 5 until we have n orthogonal vectors:

5. Let vk1  w k1 
w k1 | v1

v1 | v1
v1 

w k1 | v2

v2 | v2
v2

 
w k1 | vk

vk | vk
vk.
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Constructing the Next Vector vk1

8 Section 7.3 Orthonormal Sets and The Gram-Schmidt Algorithm


