7.3 Orthonormal Sets and The Gram-Schmidt Algorithm

Definition: Let $S = \{v_1, v_2, \ldots, v_k\}$ be a set of vectors in an inner product space *V*. We say that *S* is an *orthonormal set* if:

$$
\langle \vec{v}_i | \vec{v}_j \rangle = 0
$$
 if $i \neq j$, and
 $\langle \vec{v}_i | \vec{v}_i \rangle = 1$ for $i = 1..k$.

If we remove the condition that each member of *S* must be a unit vector but insist that all of the vectors be *non-zero*, we call *S* an *orthogonal set*.

The Orthonormal Sets in 2

$$
\vec{v} = \left\langle -\sqrt{3}/2, 1/2 \right\rangle
$$
 and $\vec{u} = \left\langle 1/2, \sqrt{3}/2 \right\rangle$

More generally:

 $\{\langle \cos(\theta), \sin(\theta) \rangle, \langle -\sin(\theta), \cos(\theta) \rangle \}$ or $\{\langle \cos(\theta), \sin(\theta) \rangle, \langle \sin(\theta), -\cos(\theta) \rangle \}$

The Orthonormal Sets in Polynomial Spaces

Consider \mathbb{P}^2 under the inner product:

$$
\langle p(x) | q(x) \rangle = p(-2)q(-2) + p(1)q(1) + p(3)q(3).
$$

Challenge: Construct an orthonormal set which is as big as possible.

Hint: Think of strategically located zeroes.

Independence of Orthonormal/Orthogonal Sets

Theorem: An orthonormal set *S* in an inner product space *V* is *linearly independent*.

Consequently, if $dim(V) = n$, and $S = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ is an orthonormal set, then $k \leq n$, and any set with more than *n* vectors cannot be orthonormal.

A similar Theorem with the word "orthogonal" replacing "orthonormal" is still true.

Orthonormal Bases

Definition/Theorem:

Let *V* be a finite dimensional inner product space with $dim(V) = n$.

An orthonormal set $S = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ with *n* vectors is called an *orthonormal basis* for *V*.

If \vec{v} is an arbitrary member of V , and S is an orthonormal basis for *V*, and:

$$
\langle \vec{v} \rangle_S = \langle c_1, c_2, \dots, c_n \rangle
$$
, then:
 $c_i = \langle \vec{v} | \vec{u}_i \rangle$.

In other words:

$$
\vec{v} = \langle \vec{v} | \vec{u}_1 \rangle \cdot \vec{u}_1 + \langle \vec{v} | \vec{u}_2 \rangle \cdot \vec{u}_2 + \cdots + \langle \vec{v} | \vec{u}_n \rangle \cdot \vec{u}_n
$$

The Gram-Schmidt Algorithm

Suppose that $\dim(V) = n$.

The input to the algorithm will be *any* basis $B = \{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_n\}$ for *V*.

The output will be an *orthogonal* set:

$$
S = {\overrightarrow{v_1}, \overrightarrow{v_2}, \ldots, \overrightarrow{v_n}},
$$

with the special property that:

$$
Span(\{\vec{w}_1,\vec{w}_2,\ldots,\vec{w}_k\}) = Span(\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k\})
$$

for all $k = 1...n$.

By dividing each vector by its length, we can thus obtain an *orthonormal* basis for *V*.

Theorem (The Gram-Schmidt Algorithm):

- 1. Start with any basis $B = \{\vec{w}_1, \vec{w}_2, ..., \vec{w}_n\}$ for *V*.
- 2. Let $\vec{v}_1 = \vec{w}_1$. If $n = 1$, we are done, otherwise proceed to Step 3:

3. Let
$$
\vec{v}_2 = \vec{w}_2 - \frac{\langle \vec{w}_2 | \vec{v}_1 \rangle}{\langle \vec{v}_1 | \vec{v}_1 \rangle} \vec{v}_1
$$
.

If $n = 2$, we are done, otherwise proceed to Step 4:

4. Let
$$
\vec{v}_3 = \vec{w}_3 - \frac{\langle \vec{w}_3 | \vec{v}_1 \rangle}{\langle \vec{v}_1 | \vec{v}_1 \rangle} \vec{v}_1 - \frac{\langle \vec{w}_3 | \vec{v}_2 \rangle}{\langle \vec{v}_2 | \vec{v}_2 \rangle} \vec{v}_2
$$
.

If $n = 3$, we are done, otherwise for all $k \geq 3$, perform Step 5 until we have *n* orthogonal vectors:

5. Let
$$
\vec{v}_{k+1} = \vec{w}_{k+1} - \frac{\langle \vec{w}_{k+1} | \vec{v}_1 \rangle}{\langle \vec{v}_1 | \vec{v}_1 \rangle} \vec{v}_1 - \frac{\langle \vec{w}_{k+1} | \vec{v}_2 \rangle}{\langle \vec{v}_2 | \vec{v}_2 \rangle} \vec{v}_2
$$

$$
- \cdots - \frac{\langle \vec{w}_{k+1} | \vec{v}_k \rangle}{\langle \vec{v}_k | \vec{v}_k \rangle} \vec{v}_k.
$$

Constructing the Next Vector \vec{v}_{k+1}