Errata and Addenda from A Portrait of Linear Algebra, 3rd Edition, 2016;
Updated 2018/10/03

Chapter Zero:
p. 14. Aninteger b € Z is odd if there exists d € Z such thatb = 2d + 1.

Exercise 31 should be: For all x, y € R: if X « y is irrational, then either X is irrational or y is
irrational.

Exercise 55 (b): N = N; + N,

Section 1.2 Exercise 26: refers to Exercise 21 and 22 in Section 1.1, not Exercises 18 and 19.
Section 1.3, page 60:

Since this is true for any r and s, let us first substitute s = U o U. Then we get:

Section 1.4. Exercise 9. The matrix is not reduced because of the 7 in the bottom row. This
should be changed to a 1. The conclusion is still correct: there are no solutions to this system.

Section 1.5

Exercise 7. Change the third equation to -2x +y —4z = 7.
The new system will be inconsistent and square.
Original system is consistent and square.

Exercise 22. Change S to: S = {(5, 3,-6,-2),(-3,-2,5,2),(-1,-2, 11, 6),(-5,-4, 1, 6)}
The corrected 3rd vector will yield the correct answer in the Key.

Exercise 25. Change S to: S = {(5, 3,-6,-2),(-3,-2,5,2),(1,0, 3, 2), (-4,—-1,-5,-4)}
The corrected 3rd and 4th vectors will yield the correct answer in the Key.



Section 1.5

Exercise 44. The current notation is somewhat confusing. We can rewrite it as follows:

In this Exercise, we will guide you to prove that if A is an m x n matrlx b is anmx 1 matrix,

and we can find at least two distinct solutions to the system AX = b then we can find an
infinite number of solutions to this system.

-

a. First, show that if X; and X are two such distinct solutions to AX = Db, thenW =X, - X, is a
solution of the homogenous system AW = Op,.

b. Next, we will use scalar multlples of X; — X, to construct an infinite number of solutions to
the homogeneous system AW = Op in (a). Explain why t;(X; —X2) # t2(X; = Xz) if t; # t5.
You may want to use the Zero Factors Theorem. Explain why this means that the set
{t(X; —X»)|t € R} is an infinite set, and every vector in this set is a solution to AW = Om

c. Use X; and part (b) to construct an infinite number of solutions to the original system
AX = b, and show that the vectors you constructed are indeed solutions to this system.

d. As a bonus, prove that any linear system AX = b either has: (1) no solutions, (2) exactly one
solution, or (3) an infinite number of solutions. Hint: Use a Case-by-Case Analysis, but be
careful how you begin the 3rd Case.

Section 1.6, page 104. =3V + 2V, should read -3V, + 2V,.

Section 1.6 Exercise 38. Change Vs to (3,-6, 7).
This corrected vector will yield the correct answer in the Key.

Section 1.8, page 127. Middle of the page, below highlighted pink line: should read. . . we can
also write C3, C4, and Ce in terms of these three columns . . .

Section 1.8, page 127. Middle of the page, below highlighted pink line: should read. . . If we
were to arrange these three vectors . . .



Section 1.8 Exercise 68.

My apologies for this major rewrite. To make induction work, we must begin with the
bottom-most non-zero rows of the rrefs:

The Uniqueness of the Reduced Row Echelon Form: We are now in a position to prove that
if A is an m x n matrix, and we obtain two matrices H and J from A using a finite sequence of
elementary row operations, and both H and J are in reduced row echelon form, then H = J.
Thus, the rref of A is unique. We will use the Principle of Mathematical Induction.

1. a. First let us take care of the trivial case: If A consists entirely of zeroes, prove that
H=A=1J.
Thus we can assume for the rest of the Exercise that A is a non-zero matrix.
b. Explain why rowspace(H) = rowspace(A) = rowspace(J).
c. Explain why the number of non-zero rows of H must be the same as the number of
non-zero rows of J. Hint: what does this number represent?

Thus we can conclude that both H and J have k non-zero rows, for some positive
number K. We must now show that every pair of corresponding rows are equal. We
will start at with the last non-zero row because it has the most number of zeroes.

We proceed with a numeric warm-up:

d. Both H and J below have rank 3:

1 00 6 7 10 -2 0 7
H = 010 -2 4 ; J = 01 4 -0 4
001 5 -3 00 0 1 -3

Explain why the 3rd row of J cannot be expressed as a linear combination of the
three rows of H. Hint: use the fact that the leading 1 is in the 4th column and every
entry to its left is zero.

¢. Now, explain in general that the leading 1 in row k of H must be in the same column
as the leading 1 in row K of J. Hint: pick the matrix whose leading one in row K is
further to the right.

f.  Both H and J below have their leading 1 in row 3 in the same column:

1 00 6 7 1 00 -2 9
H = 010 -24 [(J=| 0103 -6
001 5 -3 001 5 -2

Explain why the 3rd row of J cannot be expressed as a linear combination of the
three rows of H, and similarly, the 3rd row of H cannot be expressed as a linear
combination of the three rows of J. Hint: use the fact that the leading ones in rows 1
and 2 of J are above zeroes in row 3.

Explain in general that row k of H must be exactly the same as row k of J.
Now, let us focus on row k— 1. Both H and J below are in rref, both have rank 3,
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and their 3rd rows are the same:

1 0 -8 0 7 1 500 7
H = 01 3 04 [(J= 0010 2
00 0 1 -6 0001 -6

Explain why the 2nd row of J cannot be expressed as a linear combination of the
three rows of H. Note that this includes possibly using the 3rd row of H.

In the same spirit as parts (¢) and (g), explain in general why row k — 1 of H must be
exactly the same as row k — 1 of J.

Notice that we are working our way up each matrix. Generalize your arguments
above: show that if we already know that rows i to k of H and J have already been
shown to be equal, then row i — 1 of H and J must also be equal.

Since we can continue in this fashion until we reach row 1, this completes the proof
that all rows of H must be exactly the same as the corresponding row of J.

Epilogue: In part (d), we focused on the last non-zero row. Suppose we looked at the
first rows instead. Both H and J below are in rref and have rank 3. Show that row 1
of J is a linear combination of the three rows of H.

1 0 -80 -9 140 -30

H = 01 2 0 6 ;d=1 001 6 0
00 0 I 5 000 01



Section 2.3

p. 186 The example should read: Suppose that:
Ty, T2 : R3 > R?, given by:

Ti((XY,2)) = (3x =2y +52,2x +y —3z), and...
(the 2nd component of T; should be 2X + y — 3z, not 2X + 4y — 32).

Exercise 16. Replace [projr] with [proj._], where L = Span({n}), the normal line of IT.
Section 2.6, Exercise 27 (a) should refer to Exercise 16 instead of 13.
Section 3.1 p. 278

The final example should read: Suppose we let V = R2, but with addition defined by:
<X1, y1> &) <X2, y2> = <2X1 + 2X2, 2y + 2y2> ..

Section 3.2 p. 286
One coefficient in the Example is labelled k4. It should be c4.
Section 3.3 p. 298

The inequality sign should be reversed in the definition: In this case, we can also write:
|Y| > | X| and say that the cardinality of Y is strictly bigger than the cardinality of X.

Section 3.5 Exercises 3 and 4, part(b) for both: the right side of the equations should not be
Z(x). It should be 02 and 03, respectively.

Section 3.7 Exercise 1. refers to Exercise 8 instead in Section 3.6.

Section 5.1 p. 454. The inverse permutation should be 67! = (4,6,1,5,2,3).



