Errata and Addenda from A Portrait of Linear Algebra, 3rd Edition, 2016; Updated 2018/10/03

Chapter Zero:
p. 14. An integer $b \in \mathbb{Z}$ is odd if there exists $d \in \mathbb{Z}$ such that $b=2 d+1$.

Exercise 31 should be: For all $x, y \in \mathbb{R}$: if $x \cdot y$ is irrational, then either x is irrational or y is irrational.

Exercise 55 (b): $N=N_{1} \cdot N_{2}$

Section 1.2 Exercise 26: refers to Exercise 21 and 22 in Section 1.1, not Exercises 18 and 19.

Section 1.3, page 60:

Since this is true for any r and s, let us first substitute $s=\vec{u} \circ \vec{u}$. Then we get:

Section 1.4. Exercise 9. The matrix is not reduced because of the 7 in the bottom row. This should be changed to a 1 . The conclusion is still correct: there are no solutions to this system.

Section 1.5

Exercise 7. Change the third equation to $-2 x+y-4 z=7$.
The new system will be inconsistent and square.
Original system is consistent and square.

Exercise 22. Change S to: $S=\{\langle 5,3,-6,-2\rangle,\langle-3,-2,5,2\rangle,\langle-1,-2,11,6\rangle,\langle-5,-4,1,6\rangle\}$
The corrected 3 rd vector will yield the correct answer in the Key.

Exercise 25. Change S to: $S=\{\langle 5,3,-6,-2\rangle,\langle-3,-2,5,2\rangle,\langle 1,0,3,2\rangle,\langle-4,-1,-5,-4\rangle\}$
The corrected 3rd and 4th vectors will yield the correct answer in the Key.

Exercise 44. The current notation is somewhat confusing. We can rewrite it as follows:
In this Exercise, we will guide you to prove that if A is an $m \times n$ matrix, \vec{b} is an $m \times 1$ matrix, and we can find at least two distinct solutions to the system $A \vec{X}=\vec{b}$, then we can find an infinite number of solutions to this system.
a. First, show that if \vec{x}_{1} and \vec{x}_{2} are two such distinct solutions to $A \vec{x}=\vec{b}$, then $\vec{w}=\vec{x}_{1}-\vec{x}_{2}$ is a solution of the homogenous system $A \vec{w}=\overrightarrow{0}_{m}$.
b. Next, we will use scalar multiples of $\vec{x}_{1}-\vec{x}_{2}$ to construct an infinite number of solutions to the homogeneous system $A \vec{w}=\overrightarrow{0}_{m}$ in (a). Explain why $t_{1}\left(\vec{X}_{1}-\vec{x}_{2}\right) \neq t_{2}\left(\vec{x}_{1}-\vec{x}_{2}\right)$ if $t_{1} \neq t_{2}$. You may want to use the Zero Factors Theorem. Explain why this means that the set $\left\{t\left(\vec{x}_{1}-\vec{x}_{2}\right) \mid t \in \mathbb{R}\right\}$ is an infinite set, and every vector in this set is a solution to $A \vec{w}=\overrightarrow{0}_{m}$.
c. Use \vec{x}_{1} and part (b) to construct an infinite number of solutions to the original system $A \vec{x}=\vec{b}$, and show that the vectors you constructed are indeed solutions to this system.
d. As a bonus, prove that any linear system $A \vec{x}=\vec{b}$ either has: (1) no solutions, (2) exactly one solution, or (3) an infinite number of solutions. Hint: Use a Case-by-Case Analysis, but be careful how you begin the 3rd Case.

Section 1.6, page 104. $-\mathbf{3} \vec{v}_{1}+\mathbf{2} \vec{v}_{1}$ should read $-\mathbf{3} \vec{v}_{1}+\mathbf{2} \vec{v}_{2}$.

Section 1.6 Exercise 38. Change \vec{v}_{5} to $\langle 3,-6,7\rangle$.
This corrected vector will yield the correct answer in the Key.

Section 1.8, page 127. Middle of the page, below highlighted pink line: should read. . . we can also write \vec{c}_{3}, \vec{c}_{4}, and \vec{c}_{6} in terms of these three columns ...

Section 1.8, page 127. Middle of the page, below highlighted pink line: should read. . . If we were to arrange these three vectors . . .

Section 1.8 Exercise 68.

My apologies for this major rewrite. To make induction work, we must begin with the bottom-most non-zero rows of the rrefs:

The Uniqueness of the Reduced Row Echelon Form: We are now in a position to prove that if A is an $m \times n$ matrix, and we obtain two matrices H and J from A using a finite sequence of elementary row operations, and both H and J are in reduced row echelon form, then $H=J$. Thus, the rref of A is unique. We will use the Principle of Mathematical Induction.

1. a. First let us take care of the trivial case: If A consists entirely of zeroes, prove that $H=A=J$.
Thus we can assume for the rest of the Exercise that A is a non-zero matrix.
b. Explain why rowspace $(H)=\operatorname{rowspace}(A)=\operatorname{rowspace}(J)$.
c. Explain why the number of non-zero rows of H must be the same as the number of non-zero rows of J. Hint: what does this number represent?
Thus we can conclude that both H and J have k non-zero rows, for some positive number k. We must now show that every pair of corresponding rows are equal. We will start at with the last non-zero row because it has the most number of zeroes. We proceed with a numeric warm-up:
d. Both H and J below have rank 3:

$$
H=\left[\begin{array}{ccccc}
1 & 0 & 0 & 6 & 7 \\
0 & 1 & 0 & -2 & 4 \\
0 & 0 & 1 & 5 & -3
\end{array}\right] ; J=\left[\begin{array}{ccccc}
1 & 0 & -2 & 0 & 7 \\
0 & 1 & 4 & -0 & 4 \\
0 & 0 & 0 & 1 & -3
\end{array}\right]
$$

Explain why the 3rd row of J cannot be expressed as a linear combination of the three rows of H. Hint: use the fact that the leading 1 is in the 4th column and every entry to its left is zero.
e. Now, explain in general that the leading 1 in row k of H must be in the same column as the leading 1 in row k of J. Hint: pick the matrix whose leading one in row k is further to the right.
f. Both H and J below have their leading 1 in row 3 in the same column:

$$
H=\left[\begin{array}{ccccc}
1 & 0 & 0 & 6 & 7 \\
0 & 1 & 0 & -2 & 4 \\
0 & 0 & 1 & 5 & -3
\end{array}\right] ; J=\left[\begin{array}{ccccc}
1 & 0 & 0 & -2 & 9 \\
0 & 1 & 0 & 3 & -6 \\
0 & 0 & 1 & 5 & -2
\end{array}\right]
$$

Explain why the 3rd row of J cannot be expressed as a linear combination of the three rows of H, and similarly, the 3 rd row of H cannot be expressed as a linear combination of the three rows of J. Hint: use the fact that the leading ones in rows 1 and 2 of J are above zeroes in row 3 .
g. Explain in general that row k of H must be exactly the same as row k of J.
h. Now, let us focus on row $k-1$. Both H and J below are in rref, both have rank 3,
and their 3rd rows are the same:

$$
H=\left[\begin{array}{ccccc}
1 & 0 & -8 & 0 & 7 \\
0 & 1 & 3 & 0 & 4 \\
0 & 0 & 0 & 1 & -6
\end{array}\right] ; \quad J=\left[\begin{array}{ccccc}
1 & 5 & 0 & 0 & 7 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -6
\end{array}\right]
$$

Explain why the 2 nd row of J cannot be expressed as a linear combination of the three rows of H. Note that this includes possibly using the 3rd row of H.
i. In the same spirit as parts (e) and (g), explain in general why row $k-1$ of H must be exactly the same as row $k-1$ of J.
j. Notice that we are working our way up each matrix. Generalize your arguments above: show that if we already know that rows i to k of H and J have already been shown to be equal, then row $i-1$ of H and J must also be equal.
Since we can continue in this fashion until we reach row 1 , this completes the proof that all rows of H must be exactly the same as the corresponding row of J.
k. Epilogue: In part (d), we focused on the last non-zero row. Suppose we looked at the first rows instead. Both H and J below are in rref and have rank 3. Show that row 1 of J is a linear combination of the three rows of H.

$$
H=\left[\begin{array}{ccccc}
1 & 0 & -8 & 0 & -9 \\
0 & 1 & 2 & 0 & 6 \\
0 & 0 & 0 & 1 & 5
\end{array}\right] ; \quad J=\left[\begin{array}{ccccc}
1 & 4 & 0 & -3 & 0 \\
0 & 0 & 1 & 6 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Section 2.3
p. 186 The example should read: Suppose that:

$$
\begin{aligned}
T_{1}, T_{2} & : \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \text { given by: } \\
T_{1}(\langle x, y, z\rangle) & =\langle 3 x-2 y+5 z, 2 x+y-3 z\rangle, \text { and... }
\end{aligned}
$$

(the $2 n d$ component of T_{1} should be $2 x+y-3 z$, not $2 x+4 y-3 z$).

Exercise 16. Replace $\left[\operatorname{proj}_{\Pi}\right]$ with $\left[\operatorname{proj}_{L}\right]$, where $L=\operatorname{Span}(\{\vec{n}\})$, the normal line of Π.

Section 2.6, Exercise 27 (a) should refer to Exercise 16 instead of 13.

Section 3.1 p. 278

The final example should read: Suppose we let $V=\mathbb{R}^{2}$, but with addition defined by:

$$
\left\langle x_{1}, y_{1}\right\rangle \oplus\left\langle x_{2}, y_{2}\right\rangle=\left\langle 2 x_{1}+2 x_{2}, 2 y_{1}+2 y_{2}\right\rangle \ldots .
$$

Section 3.2 p. 286

One coefficient in the Example is labelled k_{4}. It should be c_{4}.

Section 3.3 p. 298

The inequality sign should be reversed in the definition: In this case, we can also write: $|Y|>|X|$ and say that the cardinality of Y is strictly bigger than the cardinality of X.

Section 3.5 Exercises $3 \xrightarrow[\rightarrow]{\text { and } 4, ~ p a r t(b) ~ f o r ~ b o t h: ~ t h e ~ r i g h t ~ s i d e ~ o f ~ t h e ~ e q u a t i o n s ~ s h o u l d ~ n o t ~ b e ~}$ $z(x)$. It should be $\overrightarrow{0}_{2}$ and $\overrightarrow{0}_{3}$, respectively.

Section 3.7 Exercise 1. refers to Exercise 8 instead in Section 3.6.

Section 5.1 p. 454. The inverse permutation should be $\sigma^{-1}=(4,6,1,5,2,3)$.

