Sets, Axioms, Logic, \& Proofs 8_28_2019

## Axioms for Real Numbers

There exists a non-empty set $\mathbb{R}$ that satisfies the following axioms:
(A1) Closure Property of Addition: $\forall x, y \in \mathbb{R}, x+y \in \mathbb{R}$.
(A2) Closure Property of Multiplication: $\forall x, y \in \mathbb{R}, x y \in \mathbb{R}$.
(A3) Commutative Property of Addition: $\forall x, y \in \mathbb{R}, x+y=y+x$.
(A4) Commutative Property of Multiplication: $\forall x, y \in \mathbb{R}, x y=y x$.
(A5) Associative Property of Addition: $\forall x, y, z \in \mathbb{R}, x+(y+z)=(x+y)+z$.
(A6) Associative Property of Multiplication: $\forall x, y, z \in \mathbb{R}, x(y z)=(x y) z$.
(A7) Distributive Property of Multiplication over Addition: $\forall x, y, z \in \mathbb{R}, x(y+z)=x y+x z$.
(A8) Existence of the Additive Identity: $\exists 0 \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$, we have $x+0=x$ and $0+x=x$.
(A9) Existence of the Multiplicative Identity: $\exists 1 \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$, we have $x 1=x$ and $1 x=x$.
(A10) Existence of the Additive Inverse: $\forall x \in \mathbb{R}, \exists(-x) \in \mathbb{R}$ such that $x+(-x)=0$ and $(-x)+x=0$.
(A11) Existence of the Multiplicative Inverse: $\forall x \in \mathbb{R}$, except $x=0, \exists(1 / x) \in \mathbb{R}$ such that $x(1 / x)=1$ and $(1 / x) x=1$.

