MATH 10 - Linear Algebra		Fall 2019
Axioms of Real Numbers		Handout
Sets, Axioms, Logic, & Proofs		Dr. Jorge Basilio
8_28_2019	CITY COLLEGE	gbasilio@pasadena.edu

Axioms for Real Numbers

There exists a non-empty set \mathbb{R} that satisfies the following axioms:

- (A1) Closure Property of Addition: $\forall x, y \in \mathbb{R}, x + y \in \mathbb{R}$.
- (A2) Closure Property of Multiplication: $\forall x, y \in \mathbb{R}, xy \in \mathbb{R}$.
- (A3) Commutative Property of Addition: $\forall x, y \in \mathbb{R}, x + y = y + x$.
- (A4) Commutative Property of Multiplication: $\forall x, y \in \mathbb{R}, xy = yx$.
- (A5) Associative Property of Addition: $\forall x, y, z \in \mathbb{R}, x + (y + z) = (x + y) + z$.
- (A6) Associative Property of Multiplication: $\forall x, y, z \in \mathbb{R}, x(yz) = (xy)z$.
- (A7) Distributive Property of Multiplication over Addition: $\forall x, y, z \in \mathbb{R}, x(y+z) = xy + xz$.
- (A8) Existence of the Additive Identity: $\exists 0 \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$, we have x + 0 = xand 0 + x = x.
- (A9) Existence of the Multiplicative Identity: $\exists 1 \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$, we have x1 = x and 1x = x.
- (A10) Existence of the Additive Inverse: $\forall x \in \mathbb{R}, \exists (-x) \in \mathbb{R} \text{ such that } x + (-x) = 0 \text{ and } (-x) + x = 0.$
- (A11) Existence of the Multiplicative Inverse: $\forall x \in \mathbb{R}$, except $x = 0, \exists (1/x) \in \mathbb{R}$ such that x(1/x) = 1 and (1/x)x = 1.