MATH 10 - Linear Algebra **Fall 2019** Logic, Sets, Proofs Handout Outline of Proof Techniques Dr. Jorge Basilio 刪 ASADENA Updated: 8_7_2019 gbasilio@pasadena.edu **ÖLLËĜE**® **Proof Techniques** Adapted from *Book of Proof* by Richard Hammack, please consult the book for more details. **Basic** Templates Contrapositive **Direct Proof Proposition:** If P, then Q. **Proposition:** If P, then Q. *Proof.* Suppose P. *Proof.* Suppose $\sim Q$. Therefore, Q. Therefore, $\sim P$. **Proof by Contradiction Proof by Contradiction** Proposition: P. **Proposition:** If P, then Q. *Proof.* Suppose $\sim P$. *Proof.* Suppose P and $\sim Q$. Therefore, $C \& \sim C$, Therefore, $C \& \sim C$, a contradiction. a contradiction. If-and-only-if

Proposition: P if and only if Q.

Proof. Prove $P \Rightarrow Q$ using direct, contrapositive, or contradiction. Prove $Q \Rightarrow P$ using direct, contrapositive, or contradiction.

Multiple Equivalences (TFAE)

Proposition: The following are equivalent:

1. P_1

2. P_2

~

3. . . .

4. P_k

Proof. Prove $P_1 \Rightarrow P_2$ using direct, contrapositive, or contradiction. Prove $P_2 \Rightarrow P_3$ using direct, contrapositive, or contradiction. Prove $P_i \Rightarrow P_{i+1}$, for i = 3, ..., k - 1, using direct, contrapositive, or contradiction. Prove $P_k \Rightarrow P_1$ using direct, contrapositive, or contradiction.

Mathematical Induction

Proposition: The statements S_n , for all $n \in \mathbb{N}$, are all true (i.e. S_1, S_2, S_3, \ldots are all true).

Proof. (By Induction). <u>Base Case</u> Prove that S_1 is true. <u>Inductive Case</u> Prove that given any integer k, the statement S_k implies S_{k+1} is true.

More explicitly:

Inductive Hypothesis Let $k \in \mathbb{N}$ and suppose that S_k is true.

Therefore, S_{k+1} is also true.

Therefore, by mathematical induction, it follows that S_n is true for all $n \in \mathbb{N}$.

Proofs with Sets

Recall: basic set constructions

$$A = \{x \mid P(x)\} \quad \text{"Set builder notation"} \\ A \subseteq B = \{x \mid x \in A \implies x \in B\} \\ A \cup B = \{x \mid x \in A \text{ or } x \in B\} \\ A \cap B = \{x \mid x \in A \text{ and } x \in B\} \\ A - B = \{x \mid x \in A \text{ and } x \notin B\} \\ A^c = \{x \mid x \in U \text{ and } x \notin A\} \quad \text{Note: need notion of universal} \end{cases}$$

Set Belonging

Proposition: $a \in A = \{x \mid P(x)\}.$

Proof. Show that P(a) is true. \Box

Subset (Direct)

Proposition: $A \subseteq B$.

Proof. Suppose $a \in A$.

Therefore, $a \in B$. Thus, $a \in A$ implies $a \in B$, so it follows that $A \subseteq B$.

Set Equality

Proposition: A = B.

Proof.

1. Prove that $A \subseteq B$. 2. Prove that $B \subseteq A$.

Therefore, since $A \subseteq B$ and $B \subseteq A$, it follows that A = B.

Set Belonging

Proposition: $a \in \{x \in S \mid P(x)\}.$

set U

Proof.

- 1. Verify that $a \in S$.
- 2. Show that P(a) is true.

Subset (Contrapositive)

Proposition: $A \subseteq B$.

Proof. Suppose $a \notin B$.

Therefore, $a \notin A$. Thus, $a \notin B$ implies $a \notin A$, so it follows that $A \subseteq B$.

Proofs with Functions

One-to-one (Direct)

Proposition: $f: X \to Y$ is one-to-one (or injective).

Proof. Suppose $x, y \in X$ and $x \neq y$. : Therefore, $f(x) \neq f(y)$.

One-to-one (Contrapositive)

Proposition: $f: X \to Y$ is one-to-one (or injective).

 \square

Proof. Suppose $x, y \in X$ and f(x) = f(y). : Therefore, x = y.

Onto

Proposition: $f: X \to Y$ is onto (or surjective).

Proof. Suppose $y \in Y$. Prove there exits $x \in X$ for which f(x) = y.

Bijective

Proposition: $f: X \to Y$ is bijective.

Proof.

- 1. Prove that $f: X \to Y$ is one-to-one.
- 2. Prove that $f: X \to Y$ is onto.
- Therefore, $f: X \to Y$ is bijective.

Inverse

Proposition: The inverse of $f: X \to Y$ exists.

Proof.

Prove that f is bijective. Therefore, the inverse of f exists.

Cardinality

Proposition: card(X) = card(Y).

Proof. Find a function $f: X \to Y$ and prove it is bijective. Therefore, X and Y have the same cardinality.

Additional Techniques

Uniqueness

Proposition: There's only one object with property A.

Proof. Suppose there are two objects x and y satisfying property A.

Prove x = y or arrive at a contradiction.

Existence

Proposition: There exists x such that P(x) is true.

Proof. Find or construct an example of an x that makes P(x) true.

Identities

Proposition: A = D.

Proof. We start with A = B. We have

A = B (by Assumption, Definition, or Theorem justifying A = B)

= C (by Assumption, Definition, or Theorem justifying B = C)

= D (by Assumption, Definition, or Theorem justifying C = D).

Therefore, A = D.