Outline of Proof Techniques
Updated: 8_7_2019

Dr. Jorge Basilio
gbasilio@pasadena.edu

Proof Techniques

Adapted from Book of Proof by Richard Hammack, please consult the book for more details.

Basic Templates

Direct Proof

Proposition: If P, then Q.
Proof. Suppose P.
Therefore, Q.

Contrapositive

Proposition: If P, then Q.
Proof. Suppose $\sim Q$.
\vdots
Therefore, $\sim P$.

Proof by Contradiction

Proposition: If P, then Q.
Proof. Suppose P and $\sim Q$.
\vdots
Therefore, $C \& \sim C$,
a contradiction.

If-and-only-if

Proposition: P if and only if Q.
Proof.
Prove $P \Rightarrow Q$ using direct, contrapositive, or contradiction.
Prove $Q \Rightarrow P$ using direct, contrapositive, or contradiction.

Multiple Equivalences (TFAE)

Proposition: The following are equivalent:

1. P_{1}
2. P_{2}
3. ...
4. P_{k}

Proof.

Prove $P_{1} \Rightarrow P_{2}$ using direct, contrapositive, or contradiction.
Prove $P_{2} \Rightarrow P_{3}$ using direct, contrapositive, or contradiction.
Prove $P_{i} \Rightarrow P_{i+1}$, for $i=3, \ldots, k-1$, using direct, contrapositive, or contradiction.
Prove $P_{k} \Rightarrow P_{1}$ using direct, contrapositive, or contradiction.

Mathematical Induction

Proposition: The statements S_{n}, for all $n \in \mathbb{N}$, are all true (i.e. $S_{1}, S_{2}, S_{3}, \ldots$ are all true).

Proof. (By Induction).
Base Case Prove that S_{1} is true.
Inductive Case Prove that given any integer k, the statement S_{k} implies S_{k+1} is true.

More explicitly:
Inductive Hypothesis Let $k \in \mathbb{N}$ and suppose that S_{k} is true.
!
Therefore, S_{k+1} is also true.
Therefore, by mathematical induction, it follows that S_{n} is true for all $n \in \mathbb{N}$.

Proofs with Sets

Recall: basic set constructions

$$
\begin{aligned}
A & =\{x \mid P(x)\} \quad \text { "Set builder notation" } \\
A \subseteq B & =\{x \mid x \in A \Longrightarrow x \in B\} \\
A \cup B & =\{x \mid x \in A \text { or } x \in B\} \\
A \cap B & =\{x \mid x \in A \text { and } x \in B\} \\
A-B & =\{x \mid x \in A \text { and } x \notin B\} \\
A^{c} & =\{x \mid x \in U \text { and } x \notin A\} \quad \text { Note: need notion of universal set } U
\end{aligned}
$$

Set Belonging

Proposition: $a \in A=\{x \mid P(x)\}$.
Proof. Show that $P(a)$ is true. \square

Set Belonging

Proposition: $a \in\{x \in S \mid P(x)\}$.

Proof.

1. Verify that $a \in S$.
2. Show that $P(a)$ is true.

Subset (Contrapositive)

Proposition: $A \subseteq B$.
Proof. Suppose $a \notin B$. \vdots

Therefore, $a \notin A$.
Thus, $a \notin B$ implies $a \notin A$, so it follows that $A \subseteq B$.

Set Equality

Proposition: $A=B$.
Proof.

1. Prove that $A \subseteq B$.
2. Prove that $B \subseteq A$.

Therefore, since $A \subseteq B$ and $B \subseteq A$, it follows that $A=B$.

One-to-one (Direct)

Proposition: $f: X \rightarrow Y$ is one-to-one (or injective).

Proof. Suppose $x, y \in X$ and
$x \neq y$.
Therefore, $f(x) \neq f(y)$.

One-to-one (Contrapositive)

Proposition: $f: X \rightarrow Y$ is one-to-one (or injective).

Proof. Suppose $x, y \in X$ and $f(x)=f(y)$.

Therefore, $x=y$.

Onto

Proposition: $f: X \rightarrow Y$ is onto (or surjective).
Proof. Suppose $y \in Y$.
Prove there exits $x \in X$ for which $f(x)=y$.

Bijective

Proposition: $f: X \rightarrow Y$ is bijective.
Proof.

1. Prove that $f: X \rightarrow Y$ is one-to-one.
2. Prove that $f: X \rightarrow Y$ is onto.

Therefore, $f: X \rightarrow Y$ is bijective.

Inverse

Proposition: The inverse of $f: X \rightarrow Y$ exists.
Proof.
Prove that f is bijective.
Therefore, the inverse of f exists.

Cardinality

Proposition: $\operatorname{card}(X)=\operatorname{card}(Y)$.
Proof.
Find a function $f: X \rightarrow Y$ and prove it is bijective.
Therefore, X and Y have the same cardinality.

Uniqueness

Proposition: There's only one object with property A.
Proof. Suppose there are two objects x and y satisfying property A.
Prove $x=y$ or arrive at a contradiction.

Existence

Proposition: There exists x such that $P(x)$ is true.
Proof. Find or construct an example of an x that makes $P(x)$ true.

Identities

Proposition: $A=D$.
Proof. We start with $A=B$. We have

$$
\begin{aligned}
A & =B & & \text { (by Assumption, Definition, or Theorem justifying } A=B) \\
& =C & & \text { (by Assumption, Definition, or Theorem justifying } B=C) \\
& =D & & \text { (by Assumption, Definition, or Theorem justifying } C=D) .
\end{aligned}
$$

Therefore, $A=D$.

