What is Linear Algebra？
 A Bird＇s Eye View

Dr．Jorge Eduardo Basilio

Department of Mathematics \＆Computer Science
Pasadena City College
2019

Outline

(1) Beauty \& Importance

What is Linear Algebra?

Dr. Basilio
(2) Vectors
(3) Systems of Equations
(4) Birth of Linear Algebra
(6) Back to Mathematician's vectors
(7) What is Linear Algebra?

What is Linear Algebra？Beauty \＆Importance

－A beautiful subject ．．．why？
－real mathematical theory
－（likely）your first love of proofs（ok．．exposure to proofs at least ：P）
－moves effortlessly from lines，to planes，to hyperplanes，to n－dimensional space \mathbb{R}^{n}
－you＇ll learn to＂see＂12－dimensional space
－Ditch geometry，but don＇t ditch geometry！
－theory with purpose！So many APPs（applications）
－Enormous importance！Maybe even greater than Calculus！

What is Linear Algebra？Beauty \＆Importance

－LAPs（Linear Algebra Applications）：
－Economics：Leontief model of Economics（1950s Harvard professor \rightarrow won Nobel prize in Econ）
－Physics：so many！A few are．．．
Beauty \＆
Importance
－vectors in 2D，3D，and higher dimensions
－Forces，Electrice Fields，Magnetic Fields，
－Quantum Mechanics（uses ∞－dimensional LA）
－Data Science：stats＋LA＋Calc＋programming
－Engineering：
－MATH duh！
－most（all？）mathematical courses use LA in some way
－Before you can study the LAPs you need a solid understanding of linear algebra！

Systems of
Equations
Birth of Linear Algebra

What is Linear Algebra？．．．something to do with vectors？

We start with vectors．Vectors according to．．．
Physicists
＂something with a
magnitude \＆direction＂

Computer Scientists
＂a list（or array）of numbers＂ $\vec{v}=\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 0 \\ -5\end{array}\right]$

What is Linear Algebra？．．．something to do with vectors？

Properties of vectors

Physicists

＂something with a magnitude \＆direction＂

Computer Scientists
＂a list（or array）of numbers＂

$$
\begin{aligned}
& \vec{v}+\vec{w}= \\
& {\left[\begin{array}{c}
1 \\
2 \\
-1 \\
0 \\
-5
\end{array}\right]+\left[\begin{array}{c}
3 \\
0 \\
2 \\
-2 \\
4
\end{array}\right]=\left[\begin{array}{c}
4 \\
2 \\
1 \\
-2 \\
-1
\end{array}\right]}
\end{aligned}
$$

Mathematicians
＂an element of a vector space＂

Outline

Beauty \＆
Importance

Vectors

What is Linear Algebra? ... something to do with vectors?

Mathematician's view abstracts the properties shared by many different objects studied over a long period of time. So, mathematician's care only about structure of objects not superficially what they look like.

- Vectors live in vector spaces. Vector spaces are collections of objects that satisfy many properties. The most important are:
- $P(\mathbb{R}, \mathbb{R})$ - space of all polynomials
- \mathbb{Z}^{n}
- \mathbb{Q}^{n}
- \mathbb{R}^{n}
- \mathbb{C}^{n}
- $\mathbb{M}_{n \times n}$ - space of all $n \times n$ matrices
- $C([a, b], \mathbb{R})$ - space of all continuous functions
- $C^{\infty}([a, b], \mathbb{R})$ - space of all differentiable functions
- $\ell_{\infty}(\mathbb{R})$ - space of all sequences
- space of all power series

What is Linear Algebra? ... something to do with vectors?

Mathematician's care only about structure of objects not superficially what they look like.

What do these examples have in common?

- Addition: there is a "natural" way to define how to add two objects
- Scalar Multiplication: there is a "natural" what to define what multiplying an object by a real number α
- Example: using computer scientist's concept of vector, we can define "addition" and "scalar multiplication" via components

$$
\left[\begin{array}{c}
1 \\
2 \\
-1 \\
0
\end{array}\right]+\left[\begin{array}{c}
3 \\
0 \\
2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
4 \\
2 \\
1 \\
-2
\end{array}\right] \quad \text { and } \quad \alpha \cdot\left[\begin{array}{c}
4 \\
2 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
4 \alpha \\
2 \alpha \\
\alpha \\
-2 \alpha
\end{array}\right]
$$

What is Linear Algebra? ... matrices?

Mathematician's care only about structure of objects not superficially what they look like.

- But isn't linear algebra \Longleftrightarrow Matrix Algebra?
- Addition: there is a "natural" way to define how to add two objects
- Scalar Multiplication: there is a "natural" what to define what multiplying an object by a real number α
- Example: For matrices we define "addition" and "scalar multiplication" via components as well

$$
\left[\begin{array}{cc}
1 & -7 \\
2 & 8 \\
-1 & -3 \\
0 & 2
\end{array}\right]+\left[\begin{array}{cc}
3 & 0 \\
0 & 1 \\
2 & -5 \\
-2 & 6
\end{array}\right]=\left[\begin{array}{cc}
4 & 6 \\
2 & 9 \\
1 & -8 \\
-2 & 8
\end{array}\right] \text { and } \alpha \cdot\left[\begin{array}{cc}
4 & 6 \\
2 & -1 \\
1 & -3 \\
-2 & 8
\end{array}\right]=\left[\begin{array}{cc}
4 \alpha & 6 \alpha \\
2 \alpha & -\alpha \\
\alpha & -3 \alpha \\
-2 \alpha & 8 \alpha
\end{array}\right]
$$

What is Linear Algebra？．．．Systems of Equations

Pasaden

In many ways，all of linear algebra boils down to solving a system of equations．

$$
\begin{aligned}
\left\{\begin{aligned}
& x+2 y+3 z=4 \\
&-x+y-5 z=0 \\
& 2 x-y-z=-1
\end{aligned}\right. & \Longleftrightarrow\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 1 & -5 \\
2 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
0 \\
-1
\end{array}\right] \\
& \Longleftrightarrow x\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]+y\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]+z\left[\begin{array}{c}
3 \\
-5 \\
-1
\end{array}\right]=\left[\begin{array}{c}
4 \\
0 \\
-1
\end{array}\right]
\end{aligned}
$$

Outline
Beauty \＆
Importance

Vectors

Systems of
Equations
Birth of Linear

What is Linear Algebra? ... Systems of Equations

System of equations. A simple example.

- $\left\{\begin{array}{ll}x-y & =-2 \\ x+2 y & =1\end{array} \Longleftrightarrow\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right] \Longleftrightarrow A \vec{x}=\vec{b}\right.$
- "row picture" $\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ intersection of two lines
- "column picture" $x\left[\begin{array}{l}1 \\ 1\end{array}\right]+y\left[\begin{array}{c}-1 \\ 2\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ linear combinations

Outline
Beauty \&
Importance
Vectors
Systems of
Equations
Birth of Linear
Algebra
Elimination
Back to
Mathematician's vectors

What is Linear Algebra? ... Systems of Equations

System of equations. A simple example.

- $\left\{\begin{array}{ll}x-y & =-2 \\ x+2 y & =1\end{array} \Longleftrightarrow\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right] \Longleftrightarrow A \vec{x}=\vec{b}\right.$
- "row picture" $\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ intersection of two lines

What is Linear
Algebra?
Dr. Basilio

Outline
Beauty \&
Importance
Vectors
Systems of
Equations
Birth of Linear
Algebra
Elimination
Back to
Mathematician's vectors

What is Linear Algebra?

What is Linear Algebra？．．．Systems of Equations

System of equations．A simple example．
－$\left\{\begin{array}{ll}x-y & =-2 \\ x+2 y & =1\end{array} \Longleftrightarrow\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right] \Longleftrightarrow A \vec{x}=\vec{b}\right.$
－＂column picture＂$x\left[\begin{array}{l}1 \\ 1\end{array}\right]+y\left[\begin{array}{c}-1 \\ 2\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ linear combinations
Geometry of linear combinations．．．

What is Linear Algebra？

Dr．Basilio

What is Linear Algebra? ... Systems of Equations

System of equations.

- Okay, that was easy. So what?
- We need to solve LARGE systems.

What is Linear
Algebra?
Dr. Basilio

Outline

Beauty \&
Importance

Vectors

Systems of
Equations
Birth of Linear
Algebra
Elimination
Back to
Mathematician's vectors

What is Linear Algebra?

- Note: $n=1000$ is considered "small" nowadays

What is Linear Algebra？．．．Systems of Equations

System of equations．

What is Linear
Algebra？
Dr．Basilio
－A system with n variables and n unknowns：
－＂Row picture＂$\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$
Row picture $=$ intersection of n hyperplanes
－＂Column picture＂$x_{1}\left[\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{n 1}\end{array}\right]+x_{2}\left[\begin{array}{c}a_{12} \\ a_{22} \\ \vdots \\ a_{n 2}\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}a_{1 n} \\ a_{2 n} \\ \vdots \\ a_{n n}\end{array}\right]=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$
Row picture $=$ what linear combination of columns equals \vec{b} ？

Birth of Linear Algebra

Recall the simple example.
What is Linear
Algebra?
Dr. Basilio

Outline
Beauty \&
Importance

Vectors

Systems of

Equations

Birth of Linear Algebra

Elimination
Back to
Mathematician's vectors
The birth of linear algebra is to consider ALL possible linear combinations of \vec{v} and \vec{w} !!!!

That is, $\left\{x_{1} \vec{v}+x_{2} \vec{w} \mid x_{1}, x_{2} \in \mathbb{R}\right\}=\operatorname{span}(\vec{v}, \vec{w})$

What is Linear Algebra?

- $\left\{\begin{array}{ll}x-y & =-2 \\ x+2 y & =1\end{array} \Longleftrightarrow\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right] \Longleftrightarrow A \vec{x}=\vec{b}\right.$
- "column picture" $x\left[\begin{array}{l}1 \\ 1\end{array}\right]+y\left[\begin{array}{c}-1 \\ 2\end{array}\right]=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ linear combinations
- Notation: Let $\vec{v}=\operatorname{Col} 1=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{w}=\operatorname{Col} 2=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, and $\vec{b}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
- Recall: we found that $(-1) \vec{v}+(1) \vec{w}=\vec{b}$ (i.e. $x=-1, y=1$).

$$
1 \operatorname{mal}_{15,}\left\{x_{1} v+x_{2} w \mid x_{1}, x_{2} \in \mathbb{R}\right\}=\operatorname{spdn}(v, w)
$$

Birth of Linear Algebra

The birth of linear algebra is to consider ALL possible linear combinations of \vec{v} and \vec{w} !!!!

Dr. Basilio

$$
\text { That is, }\left\{x_{1} \vec{v}+x_{2} \vec{w} \mid x_{1}, x_{2} \in \mathbb{R}\right\}=\operatorname{span}(\vec{v}, \vec{w})
$$

- Notation: Let $\vec{v}=\operatorname{Col} 1=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{w}=\operatorname{Col} 2=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, and $\vec{b}=\left[\begin{array}{l}a \\ b\end{array}\right]$
- So, we can write $A=[\vec{v} \mid \vec{w}]$
- Can we solve this for any $a, b \in \mathbb{R}$?
- YES!
- Why? Because all linear combinations of \vec{v} and \vec{w} will fill the entire plane!!!
- Higher dimensions is much more interesting :-)

Birth of Linear Algebra

To summarize：
Outline
Beauty \＆
Importance
Vectors
Systems of
Equations
Birth of Linear Algebra
－This is the same thing as asking：when is \vec{b} a linear combination of the columns vectors of A（i．e．in the span）？
－This is solved using Gauss－Jordan elimination．A clever algorithm that＇s embarrassingly simple（in principle）

Birth of Linear Algebra

- Next, we generalize our situation to systems of equations with an uneven number of equations and unknowns.

Dr. Basilio

- If we let $m=\#$ equations and $n=\#$ unknowns, we'd like to study
$\left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\ \vdots \\ \vdots \\ \vdots \\ a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}=b_{m}\end{array} \quad \Longleftrightarrow A \vec{x}=\vec{b}\right.$
Outline
Beauty \&
Importance

Vectors

Systems of

Equations

Birth of Linear Algebra

- New phenomena can occur now.
- Imagine What if we have two 5-dimensional vectors \vec{v} and \vec{w}. Can all their linear combinations fill-up all of 5-dimensional space?
- NO! There's too few vectors
- What about five, 5-dimensional vectors? It depends....they must all "live in their separate planes"...

Birth of Linear Algebra

- New phenomena can occur now.
- Imagine What if we have two 5-dimensional vectors \vec{v} and \vec{w}. Can all their linear combinations fill-up all of 5-dimensional space?
- NO! There's too few vectors
- What about five, 5-dimensional vectors? It depends....they must all "live in their separate planes"...
- This introduces the important idea of independence. That is, we say a collection of vectors are independent if they "fill up" space as much as possible (a more precise definition will be given later).
- Remarkably, all this information is encoded in the matrix A associated to the SOE.

Birth of Linear Algebra

－Remarkably，all this information is encoded in the matrix A associated to the SOE．
－By studying the structure of A ，we can answer many fundamental questions related to a SOE．

Outline
Beauty \＆
Importance
Vectors
Systems of
Equations
Birth of Linear Algebra

Elimination
Back to
Mathematician＇s vectors

What is Linear Algebra？

Gauss－Jordan Elimination

－Meanwhile：almost every problem in linear algebra is solved（one way or another with）Gauss－Jordan Elimination（GJE）．
－The method of GJE is used for
－Checking if a list of vectors are independent
－Solving SOEs：$A \vec{x}=\vec{b}$
－Checking if a vector \vec{b} is in the span of of a list of other vectors（＝space of all linear combinations）
－Finding the column space of a matrix
－Finding the row space of a matrix
－Finding the rank of a matrix
－Basically everything in Linear Algebra ：－）

Back to Mathematician＇s vectors

Recall：the mathematician＇s view of＂vectors：＂objects you can ADD and scalar multiply．We can do that with matrices！

Addition

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]+\left[\begin{array}{ccccc}
b_{11} & b_{12} & b_{13} & \cdots & b_{1 n} \\
b_{21} & b_{22} & b_{23} & \cdots & b_{2 n} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
b_{n 1} & b_{n 2} & b_{n 3} & \cdots & b_{n n}
\end{array}\right]=} \\
& {\left[\begin{array}{ccccc}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
a_{n 1}+b_{n 1} & a_{n 2}+b_{n 2} & a_{n 3}+b_{n 3} & \cdots & a_{n n}+b_{n n}
\end{array}\right]}
\end{aligned}
$$

Back to Mathematician＇s vectors

Recall：the mathematician＇s view of＂vectors：＂objects you can ADD and scalar multiply．We can do that with matrices！

Outline
Beauty \＆
Importance

Vectors

Systems of

Equations

Birth of Linear
Algebra
Elimination
Back to
Mathematician＇s vectors

What is Linear Algebra？

What is Linear Algebra？

Linear Algebra is．．．
The study of vector spaces，their structure，and the linear transforma－
tions that map one vector space to another．

What is Linear Algebra?

Linear Algebra is. . .
The study of vector spaces, their structure, and the linear transformations that map one vector space to another.

Outline

Beauty \&
Importance

Vectors

Systems of

Equations

Birth of Linear Algebra

- The second bullet is what "linear structure" means in an abstract sence.

What is Linear Algebra？

Linear Algebra is．．．
The study of vector spaces，their structure，and the linear transforma－
tions that map one vector space to another．
Outline
Beauty \＆
Importance

Vectors

Systems of
Equations
Birth of Linear Algebra
－＂additive structure：＂if $\vec{v}, \vec{w} \in V$ ，then $T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{w})$
－＂homogeneous structure：＂if $\vec{v} \in V$ and $a \in \mathbb{R}$ ，then $T(a \vec{v})=a T(\vec{v})$

What is Linear Algebra?

- Example in $1 D: L(x)=2 x$. This is a linear map from $V=\mathbb{R}$ to $W=\mathbb{R}$.
- $L(x+y)=2(x+y)=2 x+2 y=L(x)+L(y)$
- $L(a x)=2(a x)=a(2 x)=a L(x)$
- Example in 2D: $L(\langle x, y\rangle)=\langle-x-y, x+3 y\rangle$. This is a linear map from $V=\mathbb{R}^{2}$ to $W=\mathbb{R}^{2}$ (from $2 D$ plane to another $2 D$ plane)

What is Linear Algebra?

Dr. Basilio

Outline

Beauty \&
Importance

Vectors

Systems of

Equations

Birth of Linear Algebra

Elimination

Back to
Mathematician's vectors

What is Linear Algebra?

What is Linear Algebra？

Linear Algebra is．．．

There＇s so much more to this story！
－Add more structure：inner－products（measure length of vectors and angles）．Can do＂geometry＂on abstract vector spaces．
－\＆so much more！

Birth of Linear Algebra

Elimination
Back to
Mathematician＇s vectors

What is Linear Algebra？

Feet back on the ground!

Linear Algebra is. . .
The study of vector spaces, their structure, and the linear transforma-
tions that map one vector space to another.

Our story begins we the most important vector spaces: \mathbb{R}^{n} :

- $\vec{v} \in \mathbb{R}^{n}$ is a list of n-tuples:

$$
\vec{v}=\left\langle v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\rangle \quad \text { or } \quad \vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n}
\end{array}\right]
$$

What is Linear Algebra?

Dr. Basilio

