
1.4 Systems of Linear Equations

Question: When is b found in Span v1, v2, . . . , vn ?

Example: Let b  6, 4, 8 . Is b in:

 L : The line Span 9,6,12 ?

 1 : The plane with Cartesian equation 2x  4y  5z  0?

 2 : The plane with Cartesian equation 2x  9y  3z  0?
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Example: Decide if b  10,9,5,7  is a member of the
Span of the following five vectors from 4:

3,4, 1,6, 2,3, 2,5, 1, 1,9, 5,

1,2, 2,4, 9,7,8,3

If so, express b as a linear combination of these five vectors in the
simplest way possible.

Follow up:
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Matrices

Definition: A matrix is a rectangular table of numbers organized
into m rows and n columns. We say that the dimension of the
matrix is m  n, pronounced “m by n. ” If A is an m  n matrix,
we call the number or entry in row i column j as A i,j or a i,j.
Thus we write:

A 

a1,1 a1,2  a1,n

a2,1 a2,2  a2,n

   

am,1 am,2  am,n

.

In particular, an m  1 matrix will be called a column matrix,
and a 1  n matrix will be called a row matrix.
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If S  v1, v2, . . , vn is a set of vectors from m, and
b  m, we can form the m n  1 augmented matrix:

A  v1 v2  vn | b ,

where we assemble the vectors in S into columns, and we separate
the last column b with a dashed line to indicate that it represents
the right side of a system of equations. We normally use x1, x2,
. . . , xn to be the variables associated to each column.
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The Reduced Row Echelon Form

or RREF

Definition: We will say that an m  n  1 augmented matrix is
in row echelon form if it satisfies the following conditions:
1. All the rows consisting entirely of zeroes are at the bottom of
the matrix.

2. The first non-zero entry of any row is the number 1. This
entry is called a “leading 1.”

3. If the next row is non-zero, its leading 1 is to the right of the
previous leading 1.

Furthermore, we say that the matrix is in reduced row echelon
form, or rref, if the matrix satisfies the additional condition:

4. All the entries above a leading 1 are also zeroes.

If column j contains a leading 1, we call x j a leading variable,
and column j is a leading column.
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Otherwise, we call x j a free variable.

Conditions 1 and 3 forces all entries below a leading 1 to be
zeroes. Condition 4 forces all entries above the leading 1 to be
zeroes as well.

The vectors e1, e2, , ek will appear in the leading columns, in
that order, for some k  m.
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Example:

A 

1 0 4 0 9 2 | 6

0 1 3 0 6 5 | 9

0 0 0 1 2 7 | 4

0 0 0 0 0 0 | 0
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Elementary Row Operations

Definition: An elementary row operation is any one of the
following actions on a matrix:

Type: Notation:

1. Multiply row i by a nonzero scalar c R i  cR i.

2. Exchange row i and row j R i  R j.

3. Add c times row j to row i R i  R i  cR j.
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Invariance of Solution Sets

Theorem — The Invariance of Solution Sets:
An elementary row operation does not change the solution set of
an augmented matrix. In other words, if A is an augmented
matrix and B is obtained from A using an elementary row
operation, then the solution set of the system corresponding to A
is exactly the same as the solution set of the system corresponding
to B.
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The Uniqueness of the RREF

Theorem — The Uniqueness of the
Reduced Row Echelon Form:

The reduced row echelon form of a matrix is unique. Thus, if we
start with a matrix A and arrive at two matrices H and J using a
different sequence of row operations, and both H and J are in
rref, then H  J.
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The Gauss-Jordan Algorithm

The Gauss-Jordan Algorithm

1. Ignore all the leftmost columns that contain only zeros, if there
are any.

2. Starting from the top row and going downward, find the first
non-zero entry, called the pivot.

3. If the pivot is not in the top row, exchange the top row with
the pivot’s row (this is a Type 2 row operation).

4. Produce a leading 1 in the top row by dividing the entire top
row by the pivot (this is a Type 1 row operation). We call this
step normalizing the row.

5. Make the entries below the leading 1 all zeroes by adding
suitable multiples of the top row to each row below it (these are
Type 3 row operations).

6. Now, cover the top row, the leading column and all columns
to its left, and repeat steps 1 through 5 on the smaller submatrix.
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If we were to stop at Step 6, the algorithm above would be called
Gaussian Elimination. It results in a matrix in row echelon form.
Now we continue from right to left, working upwards as we go:

7. Starting at the rightmost leading 1, produce zeroes above the
leading 1 by adding suitable multiples of this row to each row
above it (again, these are Type 3 row operations).
8. Repeat Step 7 on the next rightmost leading 1, moving
leftward until the matrix is in reduced row echelon form.

12 Section 1.4 Systems of Linear Equations



An Intelligent Modification:

To avoid fractions, produce a leading “1” using a Type 3
operation instead: multiply a row by a suitable constant and add
it to another row to get a leading 1.
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Success and Failure

b is not in SpanS if we get a row consisting entirely of zeroes
except for a non-zero entry in the rightmost column.

1 7 0 6 0 | 3
0 0 1 4 0 | 2
0 0 0 0 1 | 5
0 0 0 0 0 | 1
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