2.4 Properties of Operations on
Linear Transformations and Matrices

Goal: Show that matrix operations enjoy many (but not alll!) of

the properties of the analogous operations on ordinary real
numbers.
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Properties of Matrix Addition and Scalar Multiplication

Theorem: If A, B and C are m x n matrices, and r and s are scalars,

then the following properties hold:

1. The Commutative Property of Addition:
A+B=B+4
2. The Associative Property of Addition:
A+(B+C)=A+B)+C
3. The “Left” Distributive Property:
(r+s)A =rA+ s4

4. The “Right” Distributive Property:
r(A+B) =rdAd+rB

5. The Associative Property of Scalar Multiplication:
r(sd) = (rs)A = s(rd)



Properties of Matrix Multiplication

Theorem: If A and B are m x k matrices, C and D are kx n
matrices, and 7 is a scalar, then the following properties hold:

1. The “Left” Distributive Property:
(A+B)C = AC+ BC

2. The “Right” Distributive Property:
A(C+D) = AC+ AD

3. The Associative Property of Mixed (Scalar and Matrix)
Products:

r(BC) = (rB)C = B(rC)
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The Associative Property of Matrix Multiplication

Theorem: If A is an m X p matrix, B is a p X ¢ matrix, and C is a
g % n matrix, then A(BC) = (4AB)C.

Proof:

Both products A(BC) and (AB)C are m x n matrices.

Now, we have to show that both sides, pair-wise, have exactly the
same entries.

Case 1: C = X, a g x 1 matrix.

B=[b15n... 5,]

AB = [ Aby 4b; ... Ab, |
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X1
(AB)X = [ Aby by ... Ab, |

Xg

= X1<A31> +)C2<A325 + .- +xq<AZq>

Now, let us work on A(BX):

5= [h5: . 5,]|

—_—

- -
= x1b1 +)C2b2 + .- +xqbq

Section 2.4 Properties of Operations on Linear Transformations and Matrices



A(B;C)) = A xlgl +)C232 + .- -I-xng)

= A<X131> +A<XQZQ> + .- +A<xq3q>

(by the “Right” Distributive Property)

= X1<A31> +)C2<A32> + .- +xq<AZq>
Case 2: C is an arbitrary ¢ x n matrix:
C = [01 o . cn]

(AB)c; = A(Bc))

_)
for every column c;.

Thus, column i of (AB)C is exactly the same as that of 4(BC),
and therefore (AB)C = A(BC).
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The Matrix of a Composition

Theorem: If T; :R" > RK and T, : R¥ > R™ are linear
transformations, then:

[T20T1] = [T2][T1]
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k-fold Compositions

If 7h,T5,....,T)_1,Tr are all linear transformations with the
property that the codomain of T; is the domain of Ti.1, for all
i =1..k—1, then we can inductively construct the k —fold
composition of these linear transformations by:

(TioTrio0--0Tho Tl)(T/))
= T((Ter 0 - 0 T o T1(V))

[Tk oTk100TroT] = [Ti][Ti1]---[T2][T1]
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Powers of Square Matrices and Linear Operators

Theorem: The matrix product A4 can be formed if and only if A
is an n x n matrix. Analogously, the composition 7o T can be
formed if and only if T : R” - R”, i.e., T'is an operator.

Write AA as A% and To T as T?.

Similarly, by induction, we will write:

A =4 - A" =4.4---- -4, and

TW) = T(TH'(v)) = T(I(...T(v)))
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Evaluating a Polynomial with a Matrix:

Definition: If p(x) = co + c1x+ c2x” + ++ + cpx®

with real coefficients, and A4 is any 7 x 7 matrix, then we define the
polynomial evaluation, p(A), by:

p(A) = col, + 1A+ 2 A% + - + A",

is a polynomial
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Multiplication by I, and 0.,

Theorem: If A is any m x n matrix, then:

Al, = A and 1A

AOpp = Oprpy  and  Ogumd
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Danger Zone!

The Existence of Zero Divisors:

Definition: Two n x n matrices A and B with the property that
AB = 0,,, but neither A nor B is 0, are called zero divisors.

In other words, The Zero Factors Theorem does not hold for

matrices.

AB # BA Most of the Time!

Matrix multiplication, in general, is NOT commutative!
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A Linear Transformation is Uniquely Determined by any Basis

Theorem: If T :R" - R™ s a linear transformation, and
B = {V1,V2,...,V,} is any basis for R”, then the action of T is
uniquely determined by the vectors {T(vy),T(v2),...,T(V,)}
from R™.

More specifically, if v € R” and v is expressed (uniquely) as
— — — —
V = C1V| +CVy + -+ + CpVp, then:

T(T/)) = ClT(T/)l) + C2T(T}2) =F 200 9= CnT(T/)n).
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