3.2 Linearity Properties for Finite Sets of
Vectors

Linear Combinations and Spans of Finite Sets of Vectors

.. e —
Definition: Let S = {v1, v2,..., v, be a set of vectors from a
vector space (V,8,®), and

let 7¢, 75,..., 7, € R. Then, a linear combination of the vectors
O — .
V1, U2, ..., U, wWith

coefficients r1, ra, ..., r, is an expression of the form:

(M Ov)D (1 Ov2) D & (r, O V).

. - - - - .
Similarly, the Span of the set of vectors § = {v1, v2, ..., v, } is the
set of all possible linear combinations of these vectors:

Sp[l?’l(S) = Spdi’l({?l,zb ,Zﬂ})
={(nO0)® " O0)® & (r.®v,)|

P15 72y «o.s 7y € RU}
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Example: The vector space P" consists of all polynomials of degree
at most 7.
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Membership in A Span

A useful theorem:

Theorem — The Fundamental Theorem of Algebra:

Every non-constant polynomial p(x) (that is, of degree n > 1),
with complex (or possibly real) coefficients, has exactly n complex

roots, counting multiplicities.
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Consequence:

Theorem — Equality of Polynomials: Suppose that:

p(x) = co+ci1x+cax? + - +cpx" and
q(x) = do +dix +dyx? + -+ + dx".

Then, as functions, p(x) = q(x) (i.e. the graphs of the two
functions are the same) if and only if co = do, c1 =di, ...,
cn = dy.

Note: We say that p(x) = q(x) as functions if the values of the
two functions agree for all real numbers a € R, that is:

p(a) = g(a) forall a € R.

In other words, they have the same graph.
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Example: Consider the set S of polynomials from P>:

G 4x> — Tx? — 5x + 6, 2x> — 3x? — Tx + 3,
10x3 = 19x% +x + 15

Let p(x) = 2x3 — 6x? + 20x + 3.

Decide whether or not p(x) is a member of Span(sS).
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Linear Independence of a Finite Set of Vectors

Definition: Let S = {7/)1,7}2, ,7/)”} be a set of vectors from a
vector space (V,®,®). We say that § is linearly independent if

and only if the only solution to the equation:

(102)®(02.)® @ (c,®3,) = Oy

is the trivial solution ¢; = 0,¢, =0, ..., ¢, = 0. As before, we
will refer to this equation as a dependence test equation and
sometimes just say ‘independent” to mean linearly independent.
The opposite of being linearly independent is being linearly
dependent, which means there is a non-trivial solution to the

dependence test equation, that is, where at least one ¢; is non-zero.
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Theorem: Let (V,®,®) be a vector space, and v € V. Then
S = {V} is linearly independent if and only if v + Oy.

Theorem: Let (V,®,©®) be a vector space, and Vi, v € V. Then
S = {V1,V2} is linearly independent if and only if V) is not
parallel to Vs,

Theorem: Let S = {Vi,Va2,...,V,+ be a set of vectors from a

vector space (V,®,©). Then: S is linearly dependent if and only

if at least one vector (which, without loss of generality, we can set
— . . o . — — — .

to be V1) is a linear combination of vy, v3, ..., V,, thatis:

Vi=(mOW)®T:0Wm) & & 0,0V,

for some scalars 5, r3, ..., 7, € R.
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A Sufficient Test for Independence of Sets of Polynomials

Theorem: Suppose S = {pi(x), p2(x), ..., pi(x)} is a set of
polynomials from P” with distinct degrees. Then S is linearly

independent. In particular, the set {1, x, x?, ..., x"} is linearly
independent.
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Example: Consider the set S = {e™*, ¥, e>*}.

Generalization:

Theorem: Suppose S = {ek1¥, ek | . efrr},
where k1 < ko < -+ < k,, are n distinct real numbers.
Then: § is linearly independent.
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