
3.3 Linearity Properties for Infinite Sets of
Vectors

Definition: A non-empty set X is finite if the number of elements
in the set is finite, that is, a positive integer n. In other words, we
can choose to list the elements of X in some particular order, say:

X  x1, x2,  , xn ,

where the list eventually terminates. In this case, we call n the
cardinality of our set, and we use the notation:

| X |  n,

pronounced as “the cardinality of X is n. ”
We agree that the empty set has cardinality 0, and we also consider
it to be a finite set.
A set that is not finite is called an infinite set.
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Examples:

  0, 1, 2, 3, . . . .

  . . .3,2,1, 0, 1, 2, 3, . . . .

  a
b

| a and b are integers, with b  0 ,

 
.

21 3 4 0
..

e .

The Real Number Line With Some Members of 

      .
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Definition/Theorem — The Schroeder-Bernstein Theorem:
Suppose that X and Y are two sets (they can be finite or infinite).
Then |X |  |Y |, that is, X and Y have the same cardinality, if and
only if there exists a function f : X  Y which is both one-to-one
and onto.

 .

.. ..X

.

.  .  .x4x1 x2 x3

.. ..Y .  .  .
y4y1 y2 y3

.

A One-to-One Correspondence

Between Two Sets X and Y
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Notation:

| |  0.

Any set with cardinality 0 is called countable.

Example:

  . . .3,2,1, 0, 1, 2, 3, . . . .

 is also countable; proof in the Exercises.

Example:  is not countable, in other words, it is impossible to list
all the real numbers in a sequence.
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Definitions — Comparing Cardinalities:
Suppose that X and Y are two sets (they can be finite or infinite).
Then we say that | X | | Y |, that is, the cardinality of X is strictly
smaller than the cardinality of Y, if there exists a function
f : X  Y which is one-to-one, but there is no such function which
is both one-to-one and onto. In this case, we can also write:
| Y | | X |and say that the cardinality of Y is strictly bigger than the
cardinality of X.
We can also say that | X | | Y |, that is, the cardinality of X is at
most the cardinality of Y, if there exists a function f : X  Y
which is one-to-one. Such a function may or may not be onto. In
this case, we can also write: | Y | | X |and say that the cardinality of
Y is at least the cardinality of X.

| |  1  0  | |.

Any infinite set such as  whose cardinality is strictly bigger than
0 is called uncountable.

Section 3.3 Linearity Properties for Infinite Sets of Vectors 5



Theorem — Countable and Uncountable Sets of Numbers:
The set of natural numbers, integers, and rational numbers are all
countable:

| |  | |  | |  0.
However, the set of real numbers, the set of irrational numbers,
and all intervals of the real number line that contain at least two
points are all uncountable and have cardinality 1:

| |  |   |  |a, b |  | a, b |  | a, b |  |a, b |  | |
where a  b  . More generally, these infinite intervals also have
cardinality 1:

|, b |  |, b |  |a,  |  | a,  |  1.
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Describing Infinite Sets of Vectors

General set-builder notation:

S  vi | i  I , where I is some indexing set (a subset of ).

To avoid ambiguity, we will insist that vi  vj if i and j are
distinct indices in I. In other words, distinct indices correspond to
distinct vectors, and vice versa.
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Example:

S  1, x, x2, x3,  , xn,  ,

Rewrite in set-builder notation.

Sets of even monomials and odd monomials:
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Example:

S1  ekx | k      , e3x, e2x, ex, 1, ex, e2x, e3x,  .

S2  ekx | k   

S3  ekx | k   .
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Linearity Concepts for Infinite Sets of Vectors

Suppose we are given the infinite set of vectors:

S  vi | i  I ,

for some indexing set I. A finite subset of S can be listed explicitly,
and written in roster form:

vi1 , vi2 ,  , vin,
where i1, i2,  , in are numbers from I, which are called indices
(the plural of index), with i1  i2    in. This notation is
particularly important if I is not countable. This notation is called
a double subscript notation, because the subscripts of v also
contain a subscript.
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Definition: Let V,, be a vector space. Suppose that S is an
infinite set of vectors from V. A linear combination of vectors
from S can be constructed in the following way:
(a) Choose a finite subset of vectors: vi1 , vi2, . . . , vin  from S.
(b) Choose a finite list of scalars r1, r2,  , rn  , as before.
(c) Form the vector expression:

r1  vi1   r2  vi2    rn  vin .

Similarly, the Span of S, denoted SpanS as before, can be
defined as the set of all possible linear combinations of vectors
from finite subsets of S.
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Based on the description above, we can construct SpanS as
follows:

 Form all finite subsets of S : vi1, vi1 , vi2,
vi1 , vi2 , vi3, . . . and so on.

In other words, form all subsets consisting of exactly one
vector, exactly two vectors, exactly three vectors, and so on.

 For each of these subsets, form all possible linear
combinations of these finite sets.

 Collect all of these linear combinations in one giant set which
will be SpanS.
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Theorem: Suppose that S  v0, v1, v2, v3,  , vk,  is a
countable set of vectors from a vector space V. Then, a linear
combination of the vectors in S is an expression of the form:

c0v0  c1v1  c2v2   ckvk,
for some k   and coefficients c0, c1, , ck. Similarly, SpanS
is the set of all linear combinations from S of the form given
above.

Proof: A finite subset of n vectors from S has the form:

vi1 , vi2, , vin,

where we can assume that i1  i2    in, and these subscripts
are all natural numbers.

A linear combination of this finite set has the form:

r1vi1  r2vi2   rnvin .
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Example:

v2, v5, v7

0  v0  0  v1  c2v2  0  v3  0  v4  c5v5  0  v6  c7v7

v0, v1, v2,  , v7

Generalize:

c0v0  c1v1  c2v2   ckvk,
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Example: Let us consider the infinite set:

S  xn | n     1, x, x2, x3,  , xn,    F,

c0  1  c1  x  c2  x2  c3  x3   cn  xn

 c0  c1x  c2x2  c3x3   cnxn.

  Span1, x, x2, x3,  , xn,  

 Spanxn | n   . 
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Example: Consider the uncountable set:
S3  ekx |k    F.

To form a finite subset of n vectors, we pick n real numbers:

k1  k2    kn,

and form the set:

ek1x, ek2x,  , eknx.

A linear combination of this finite set therefore has the form:

c1ek1x  c2ek2x   cneknx,

for some scalars c1, c2,  , cn.
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Definition: Suppose that S  vi | i  I  is an infinite set of
vectors. We will say that S is linearly independent if every finite
subset of S is linearly independent. This means that we must form
every finite subset of S, in the form vi1 , vi2, . . . , vin , where ever
i j  I, and test whether or not this finite subset is independent. As
soon as one finite subset is dependent, then S itself is dependent.
However, if all finite subsets are independent, then S is
independent.
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Theorem: Suppose that S  v0, v1, v2, v3,  , vn,  is a
countable set of vectors from a vector space V. Then, S is linearly
independent if and only if every finite subset of the form:

v0, v1, v2, v3,  , vn

is linearly independent, for every n  . Similarly, if
S  vi | i  I , where I  , then S is linearly independent if
and only if every finite subset of the form:

vi1 , vi2, . . . , vin

is linearly independent, for all indices i1  i2    in, where n
is a positive integer.
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Example: Let us return to S  1, x, x2, x3, . . . , xn, . . .   F.

Is S dependent or independent?

Example: Let us decide if the infinite uncountable set:

S3  ekx |k  

is linearly dependent or independent. We saw that every finite
subset of S3 has the form:

ek1x, ek2x,  , eknx,

where k1  k2    kn and n is a positive integer.
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