
3.4 Subspaces, Basis, and Dimension

Subspaces

Definition: A non-empty subset W of a vector space V,, is
called a subspace of V if W is closed under vector addition and
scalar multiplication.
In other words, for all w 1 and w 2  W, and k  :
w 1  w 2  W, and k  w 1  W.
As before, we write W  V, and we refer to V as the ambient space
of W.
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All the equations in Axioms 3, 4, 7, 8, 9 and 10 are automatically
satisfied (we say they are inherited from V.

How about 0V and w?

Theorem: Let W be a non-empty subset of V,,.
Then: W is a subspace of V if and only if W,, is itself a
vector space.
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As before, the Span of a set of vectors is one of the easiest ways to
construct a subspace of a vector space:

Theorem: Suppose S  vi | i  I   V,,, where I   is
some non-empty indexing set, and let W  SpanS.
Then: W,, is a subspace of V,,.
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Subspaces of Function and Polynomial Spaces
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The Nesting of Polynomial Spaces
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Subspaces of FI

The set CI of continuous functions on I is a subspace of FI.

(sum also continuous? constant multiple?)

Now we focus on differentiable functions.

The sum of two differentiable functions and a scalar multiple of a
differentiable function are again differentiable.

However, we will further require that the derivative of these
functions also be continuous (there are indeed examples of
differentiable functions whose derivatives are discontinuous.).

We call these functions C1I, to denote that the first derivative is
continuous.

Section 3.4 Subspaces, Basis, and Dimension 5



But recall that a function which is differentiable on an open
interval I is itself also continuous on I, and therefore the space
C1I is a subspace of CI:

C1I  CI

Continuing with this logic, a function which is
twice-differentiable on I with a continuous 2nd derivative also
possesses a continuous first derivative, and so we can create:

C2I  C1I

where C2I denotes all twice-differentiable functions whose
second derivative is also continuous.
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By Induction, we can define the subspace CnI consisting of all
functions which are differentiable n times, and whose nth derivative
is also continuous.

FI  CI  C1I  C2I  
 CnI  Cn1I  

Finally, we also have the subspace CI of functions which have
derivatives of all possible orders, and all of whose derivatives are
also continuous.

We sometimes call this subspace the set of real analytic or smooth
functions.

Our friends the polynomials, the sine and cosine functions, and
the exponential functions of any base, are all members of CI:
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Basis for a Vector Space

Definition — Basis for a Vector Space:
A set of vectors B from a vector space V,, is a basis for V if it
is linearly independent and Spans V.

We will agree that the zero vector space V  0V does not have
a basis, since any set containing 0V is automatically dependent.

Theorem — Uniqueness of Representation:

Suppose that S  vi | i  I , for some non-empty indexing set
I, is a set of vectors from some vector space V,,.

Then: S is a basis for V,, if and only if every vector v  V
can be represented uniquely as a linear combination of a finite
subset of vectors  vi1 , vi2 , . . . , vik from S:

v  c1vi1  c2vi2   ckvik .
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To construct a basis for a subspace, we will need:

Theorem — The Extension Theorem:
Let S   v1, v2, . . . , vn be a finite, linearly independent set of
vectors from some vector space V,,, and suppose vn1 is not
a member of SpanS.
Then, the extended set: S /   v1, v2, . . . , vn, vn1 is still linearly
independent.

Theorem — Existence of a Basis: Every non-zero vector space
V,, has a basis B.
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The Dimension of a Vector Space

Definition: A non-zero vector space V,, is called finite
dimensional if we can find a finite set B which is a basis for V. We
call such a set a finite basis for V.
Otherwise, we say that V is infinite dimensional.

We will agree that the zero vector space V  0V has dimension
0, and is also finite-dimensional.
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To generalize the definition in Chapter 1, as before, we will need
to generalize:

Theorem — The Dependent/Independent Sets from Spanning
Sets Theorem:
Suppose we have a set of n vectors:
S  w 1, w 2, . . . , w n  V,,,
and we form W  SpanS.
Suppose now we randomly choose a set of m vectors from W to
form a new set:

L  u1, u2, . . . , um.
Then, we can conclude that: if m  n, then L is linearly
dependent.
Consequently, the contrapositive states that: if L is linearly
independent, then m  n.
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Definition/Theorem — The Dimension of a Vector Space:
Any two bases for a finite-dimensional vector space V,, have
exactly the same number of elements. We call this common
number the dimension of V and is denoted as dimV. If
dimV  k, we also say that V is a k-dimensional vector space.

Theorem: Let W,, be a subspace of a finite-dimensional
vector space V,,.
If dimV  n, then dimW  n, that is, dimW  dimV.
Furthermore, dimW  n  dimV if and only if W  V.
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