5.1 Permutations and The Determinant
Concept

a b
Deﬁnitz’on: Let A= y be a 2x2 matrix. The
%

determinant of A is defined by:
det(A) = ad — be.

Other common notations for det(A) are | A | or

Theorem: A 2x2 matrix A is invertible if and only if
det(A4) + 0.
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Motivating a General Definition

IfA = , then:

a’et(A) = 41,1422 — 41,2421 .-
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Creating the 3 x 3 Determinant

Every term will now contain three factors, of the form:

T a 1,_612,_61 3,

There will be six ways to fill in the blanks.

When will the term be positive, when will the term be negative?
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Table of Terms

Number of
Term Columns | Inversions
Inversions
ia1,1a2,2a3,3 1,2,3 nonc 0
ia1,1a2,3a3,2 1,3,2 3>2 1
ia1,2a2,1a3,3 2, 1,3 2> 1 1
2> 1
taipazzas; 2,3,1 2
3> 1
3> 1
ia1,3a2,1a3,2 3, 1,2 2
3>2
3>2
1302203, 3,2,1 3>1 3
2> 1
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Number of

Term Coefficient | Final Term
Inversions

ia1,1a2,2a3,3 0 + Td1,1422033
Tai1a23a32 1 — —a1,1423A432
taiaz1a33 1 — —a120d210433
ta)az3as3,) 2 + +a12a2,3a3,
ta|sazi1asp 2 + +a13a2,1a32
ia1,3a2,2a3,1 3 — —a13d22d3 1
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Visualizing The Six Terms

aiil a2 aij
a1 |d22| aAz3
asl d3z2 |d33
+d1,1022033
ai1 |di2| aig
a1 dz22 |d23
asil d3z2 d33
td1202303 ]
a1 di2 |di13
a1l dzz a3
asl |d32l d33

TA13d210432

anll di2 di3s
a1 dz2 |d23
aszil |d32f d4d3z3
—a1,1a23432
ai, |dizl ai3
a1l d22 d23
aszil d3z2 |d33
—d1,2d2,1433
ai, diz |4i13
az1 |d22| d23
aszil d3z2 4aszgs
—a13d2,2d3,1
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The 3 x 3 Determinant

Ddi?’llthﬂ IfA = a1 d4dzp a3 , then:

det(A) = ar,1a22a33 + a12a2343,1 + 41,342,143

—a13422431 — 41,1423432 — 41,2421433
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Permutation Theory

Definitions: A permutation of the set of integers {1, 2, ..., 7}, is
an ordered list consisting of these numbers, with each number
appearing exactly omce. In other words, a permutation is a
rearrangement of these numbers. We will label permutations with
lowercase Greek letters such as o or 7, and write them as:

O = (il,iz, ,Zn)

We call 7, the k™ component of o.

Theorem: The number of permutations of {1, 2, ..., n} is:

nl=nem—1)+(n—2)+..232-1
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Inversions

Definition: An inversion occurs in a permutation o every time a
component on the left is bigger than a component to its right.

We say that o is even if there are an even number of inversions in
0, and o is odd if there are an odd number of inversions in o.

We define the sign of o, denoted sgn(c), to be +1 if ¢ is even, and
—1if o is odd.
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Permutations as Bijections

A permutation o can also be regarded as a bijection of the set
{1,2,...,n}. Recall this means that ¢ is a one-to-one and onto
function.

We can define the value of (i) as the i component of o.
p

Since o is a bijection, it has an inverse, denoted oL,
and if o(x) = y, theno™'(y) = x.
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The Graph of a Permutation

List out 1 through # in two horizontal rows, and draw an arrow
from i to the number in the i’ component. Put a big space

between the two rows to give you some wiggle room.
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Counting Inversions from the Graph

Theorem: Suppose we represent ©, a permutation of
S={1,2,...,n}, as a directed graph in the convention shown
above. If a<b e S, o(a) =c, and o(b) =d, then ¢ is an
inversion with respect to d (that is, ¢ > d) if and only if the edge
a — ¢ intersects the edge b - d between our two lines of

numbers.
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The Effect of a Switch

Theorem: Let o be a permutation of {1, 2, 3, .., n}, and let 6’ be
the permutation obtained from o by exchanging any two
components of . Then:

sgn(c’) = —sgn(o).

Ideas behind the proof:

(8) 5) 3) ) ) ]‘) 4) 6)
(8) ) 3) 2) 7) ) 4) 6)
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The Balance of Even and Odd Permutations

Theorem: Exactly half of the n! permutations of {1,2,3,..,n}
are even, and half are odd.

Even Permutations = Odd Permutations
(1,2,3) (2,1,3)
(2,3,1) (3,2,1)
(3,1,2) (1,3,2)




