
6.3 Diagonalization of Square Matrices

Definition: Let A be an n  n matrix. We say that A is
diagonalizable if we can find an invertible matrix C such that:

C1AC  D,

where D  Diag1,2, . . . ,n  is a diagonal matrix, or
equivalently:

AC  CD or A  CDC1

We also say that C diagonalizes A.
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When Can We Diagonalize?

Study:

AC  CD

Partition C into columns:

C  v1 | v2 |  | vn

AC  Av1 | Av2 |  | Avn

CD  1v1 | 2v2 |  | nvn

We must satisfy:

Avi  ivi

for each column vi.
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The Basis Test for Diagonalizability

Theorem (The Basis Test for Diagonalizability):
Let A be an n  n matrix. Then, A is diagonalizable if and only if
we can find a basis for n consisting of n linearly independent
eigenvectors for A, say v1, v2, . . . , vn. If this is the case, then the
diagonalizing matrix C is simply the matrix whose columns are v1,
v2, . . . , vn, and the diagonal matrix D contains the corresponding
eigenvalues along the main diagonal.
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Keep It Real

Theorem: Let A be an n  n matrix with imaginary eigenvalues.
Then A is not diagonalizable over the set of real invertible
matrices.
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Independence of Eigenvectors

Theorem: Let S  v1, v2, . . . , vk be an ordered set of
eigenvectors for an n  n matrix A, and suppose that the
corresponding eigenvalues 1, 2, . . . , k for these eigenvectors
are all distinct. Then: S is linearly independent. Thus, if A has a
total of m distinct eigenvalues, we can find at least m linearly
independent eigenvectors for A.
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Use induction on k.

k  1 : Why is v1 independent?

Inductive Hypothesis: Assume v1, v2, . . . , vj is independent.

Inductive Step: Prove v1, v2, . . . , vj, vj1 is still independent:
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Geometric and Algebraic Multiplicities

Definitions: Let A be an n  n matrix with distinct (possibly
imaginary) eigenvalues 1, 2, . . . , k. Suppose p factors as:

p    1 n1    2 n2      k nk ,

where n1  n2   nk  n.

We call the exponent n i the algebraic multiplicity of  i.

We call dimEigA, i  the geometric multiplicity of  i.

We agree that dimEigA, i   0 if  i is an imaginary
eigenvalue.
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A Deep Theorem from “Algebraic Geometry”

Theorem (The Geometric vs. Algebraic Multiplicity Theorem):

For any eigenvalue  i of an n  n matrix. A, the geometric
multiplicity of  i is at most equal to the algebraic multiplicity of
 i.
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Consequently:

Theorem (The Multiplicity Test for Diagonalizability):

Let A be an n  n matrix. Then A is diagonalizable if and only if
for all of its eigenvalues  i, the geometric multiplicity of  i is
exactly equal to its algebraic multiplicity.
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A Sure Bet

Theorem: Let A be an n  n matrix with n distinct (real)
eigenvalues. Then A is diagonalizable.
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Powers of Diagonalizable Matrices

A  CDC1

A2  CDC1CDC1

 CDC1CDC1

 CD2C1

Ak  CDkC1

Section 6.3 Diagonalization of Square Matrices 11


