Chapter 1

The Canvas of Linear Algebra:

Euclidean Spaces and Subspaces

1.1 The Main Subject: Euclidean Spaces

Definition: An *ordered n* – *tuple* or *vector* is an ordered list of *n* real numbers:

$$\vec{v} = \langle v_1, v_2, \ldots, v_n \rangle.$$

$$point (X_1, X_2, \dots, X_n)$$

Definition: The set of all possible n - tuples is called **Euclidean** n - space, denoted by the symbol \mathbb{R}^n :

$$\mathbb{R}^{n} = \{ \overrightarrow{v} = \langle v_{1}, v_{2}, \dots, v_{n} \rangle \mid v_{1}, v_{2}, \dots, v_{n} \in \mathbb{R} \}.$$
$$\mathbb{R}^{n} = \{ \overrightarrow{v} \mid \overrightarrow{\zeta} \qquad \overrightarrow{v} \in \mathbb{R}^{5}, \ \overrightarrow{v} = \angle^{3}, \lor_{1}^{0}, \neg^{-2}, \overset{<}{\sim} \end{cases}$$

To distinguish real numbers from vectors, we will also refer to real numbers as *scalars*.

" Leal #

$$\vec{W} \in [D^{2}], \vec{Z} = <5, -2, 0, 1, 3$$

 $\vec{V} \neq \vec{W}$

Definition: Two vectors $\vec{u} = \langle u_1, u_2, ..., u_n \rangle$ and $\vec{v} = \langle v_1, v_2, \dots, v_n \rangle$ from \mathbb{R}^n are *equal* if all of their components are pairwise equal, that is, $u_i = v_i$ for i = 1..n. Two vectors from *different* Euclidean spaces are *never* equal.

for
$$\vec{v} = \vec{w}$$
 we must $\vec{v} \notin \vec{w}$ from some \vec{v}
 $\vec{v} = c^{1}, 2, 3, 7 \in \mathbb{R}^{3}$ $\vec{v} \neq \vec{w}$
 $\vec{w} = c^{1}, 2, 3, 9, 90 > e^{iR^{6}}$

Definitions: Each \mathbb{R}^n has a special element called the **zero vector**, all of whose components are zero: $\vec{0}_n = \langle 0, 0, ..., 0 \rangle$. Every vector $\vec{v} = \langle v_1, v_2, \dots, v_n \rangle \in \mathbb{R}^n$ has its own *additive*

inverse, also known as its *negative*:

$$-\overrightarrow{v} = \langle -v_1, -v_2, \dots, -v_n \rangle.$$

Vector Arithmetic

Definitions: If $\vec{u} = \langle u_1, u_2, ..., u_n \rangle$ and $\vec{v} = \langle v_1, v_2, ..., v_n \rangle$ are vectors in \mathbb{R}^n , we define the *vector sum*:

$$\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2, \dots, u_n + v_n \rangle,$$

and if $r \in \mathbb{R}$, we define the *scalar product*: (also called scalar multiplication)

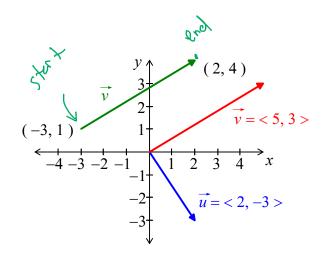
$$r \cdot \vec{v} := \vec{v} = \langle rv_1, rv_2, \dots, rv_n \rangle.$$

We will call the operation of finding the vector sum as *vector addition*, and the operation of finding a scalar product as *scalar multiplication*. We can also define *vector subtraction* by:

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v}) = \langle u_1 - v_1, u_2 - v_2, \dots, u_n - v_n \rangle.$$

Theorem: The Multiplicative Property of the Scalar Zero:
Let
$$\vec{v} = \langle v_1, v_2, ..., v_n \rangle \in \mathbb{R}^n$$
. Then:
 $\begin{array}{c} \mathbf{0} \cdot \vec{v} = \vec{0}_n. \\ \hline \\ scalar \\ \hline \\ eco \ vector \\ \hline \\ scalar \\ mv \ H \\ \hline \\ e \ \langle 0, 0, ..., 07 \end{array} \xrightarrow{(nv \ H \ in \ R)} (nv \ H \ in \ R)$

Visualizing Vectors from \mathbb{R}^2



Plotting Vectors in \mathbb{R}^2

Translating Vectors in \mathbb{R}^2

Theorem: Let $\vec{u} = \langle u_1, u_2 \rangle \in \mathbb{R}^2$, and $P(a_1, b_1)$ a point on the Cartesian plane. If \vec{u} is translated to P, then then head of \vec{u} will be located at $Q(a_2, b_2)$, where:

$$a_2 = a_1 + u_1$$
, and $b_2 = b_1 + u_2$.

Conversely, if $P(a_1, b_1)$ and $Q(a_2, b_2)$ are two points on the Cartesian plane, then the vector $\vec{u} \in \mathbb{R}^2$ from *P* to *Q* is:

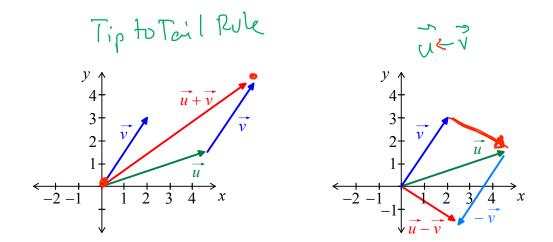
$$\overrightarrow{u} = \overrightarrow{PQ} = \langle a_2 - a_1, b_2 - b_1 \rangle.$$

$$P = (x_{1}, y_{1})$$

$$Q = (x_{2}, y_{2})$$

$$V = PQ = (x_{2} - x_{1}, y_{2} - y_{1})$$

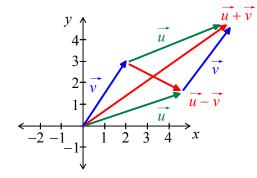
The Geometry of Vector Arithmetic in \mathbb{R}^2

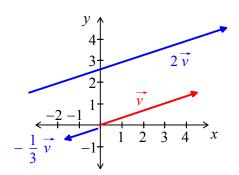


Vector Addition and Subtraction in \mathbb{R}^2

The Parallelogram Principle;

Scalar Multiplication





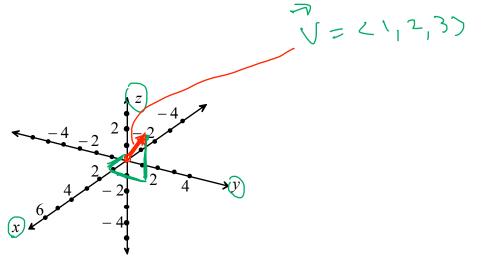
Definition: Axiom for Parallel Vectors:

We say that two vectors $\vec{u}, \vec{v} \in \mathbb{R}^n$ are *parallel to each other* if there exists either $\underline{a \in \mathbb{R}}$ or $b \in \mathbb{R}$ such that:

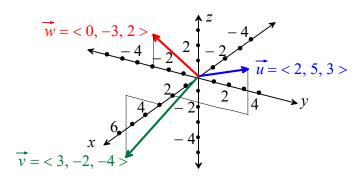
$$\vec{u} = a \cdot \vec{v}$$
 or $\vec{v} = b \cdot \vec{u}$.

Consequently, this means that $\vec{\mathbf{0}}_n$ is parallel to **all** vectors $\vec{v} \in \mathbb{R}^n$, since $\vec{\mathbf{0}}_n = 0 \cdot \vec{v}$.

Visualizing Vectors from \mathbb{R}^3



Cartesian Space



Plotting Vectors from \mathbb{R}^3

Translating Vectors in \mathbb{R}^3

Theorem: Let $\vec{u} = \langle u_1, u_2, u_3 \rangle \in \mathbb{R}^3$, and $P(a_1, b_1, c_1)$ a point in Cartesian space. If \vec{u} is translated to P, then then head of \vec{u} will be located at $Q(a_2, b_2, c_2)$, where:

$$a_2 = a_1 + u_1$$
, $b_2 = b_1 + u_2$, and $c_2 = c_1 + u_3$.

Conversely, let $P(a_1, b_1, c_1)$ and $Q(a_2, b_2, c_2)$ be two points in Cartesian space. Then the vector $\vec{u} \in \mathbb{R}^3$ from P to Q is:

$$\vec{u} = \overrightarrow{PQ} = \langle a_2 - a_1, b_2 - b_1, c_2 - c_1 \rangle.$$

Properties of Vector Arithmetic

TheoremProperties of Vector Arithmetic:If
$$\vec{u}$$
, \vec{v} , and \vec{w} are vectors in \mathbb{R}^n and r and s are scalars, then the
following properties are true:1. The Closure Property of Vector Addition
 $\vec{u} + \vec{v}$ is also in \mathbb{R}^n .2. The Closure Property of Scalar Multiplication
 $r\vec{u}$ is also in \mathbb{R}^n .3. The Commutative Property of Vector Addition
 $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.4. The Associative Property of Vector Addition
 $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$.5. The Additive Identity Property
 $\vec{0}_n + \vec{v} = \vec{v} + \vec{0}_n$.

$$\begin{aligned} & \forall \vec{v} \in \mathbb{R}^{n}, \quad \exists -\vec{v} \in \mathbb{R}^{n} \quad \text{so fm}^{+} \\ 6. The Additive Inverse Property \\ & \vec{v} + (-\vec{v}) = \vec{0}_{n} = (-\vec{v}) + \vec{v}. \end{aligned} \qquad \text{to prove.} \\ \hline \vec{v} + (-\vec{v}) = \vec{0}_{n} = (-\vec{v}) + \vec{v}. \end{aligned} \qquad \text{to prove.} \\ 7. The "Left" Distributive Property \\ & (r+s)\vec{v} = r\vec{v} + s\vec{v}. \\ \hline scalars vec vec} \end{aligned} \qquad \text{to prove.} \\ 8. The "Right" Distributive Property \\ & \vec{r}(\vec{u} + \vec{v}) = r\vec{u} + r\vec{v}. \\ 9. The Associative Property of \\ Scalar Multiplication \\ & (rs)\vec{v} = r(s\vec{v}) = s(r\vec{v}). \end{aligned} \qquad \text{to prove.} \\ 10. The Unitary Property of Scalar Multiplication \end{aligned}$$

$$\frac{1}{y} = \frac{1}{y}$$

$$\frac{1}{y}$$

$$\frac{1}{y} = \frac{1}{y}$$

$$\frac{1}{y}$$

$$\frac{1}{y} = \frac{1}{y}$$

$$\frac{1}{y}$$

$$\frac{1}{y} = \frac{1}{y}$$

$$\frac{1}{y}$$

$$\frac{1}$$

$$= r(s\vec{v}).$$
The Length of a Vector: $(\text{ tris is extra structure})$
 $\vec{v} = \langle v_1, v_2, \dots, v_n \rangle$, $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$
Definition: Let $\vec{v} = \langle v_1, v_2 \rangle \in \mathbb{R}^2$ and $\vec{w} = \langle w_1, w_2, w_3 \rangle \in \mathbb{R}^3$.
We define the length or norm or magnitude of these vectors as:
 $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2}$ and $\|\vec{w}\| = \sqrt{w_1^2 + w_2^2 + w_3^2}$.
We say that \vec{v} is a unit vector if $\|\vec{v}\| = 1$. Similarly, \vec{w} is a unit vector if $\|\vec{w}\| = 1$.
 $(\sqrt{(\sqrt{w_1^2 + w_2^2} + w_3^2)}, \sqrt{(\sqrt{w_1^2 + w_2^2}$

Theorem: For any scalar
$$k \in \mathbb{R}$$
 and vector $\vec{v} \in \mathbb{R}^2$ or \mathbb{R}^3 :
 $\|k\vec{v}\| = |k| \|\vec{v}\|$.
Furthermore, $\|\vec{v}\| \ge 0$, and $\|\vec{v}\| = 0$ if and only if $\vec{v} = \vec{0}_2$ or
 $\vec{0}_3$. Consequently, if \vec{v} is a non-zero vector, then:
 $\vec{u}_1 = \frac{1}{\|\vec{v}\|}\vec{v}$ and $\vec{u}_2 = \frac{-1}{\|\vec{v}\|}\vec{v}$
are unit vectors parallel to \vec{v} .

Linear Combinations SUPER IMPORTANT!

Definition: If
$$\vec{v}_1$$
, \vec{v}_2 , ..., $\vec{v}_k \in \mathbb{R}^n$, and x_1 , x_2 , ..., $x_k \in \mathbb{R}$,
then the vector expression:
 $x_1\vec{v}_1 + x_2\vec{v}_2 + \dots + x_k\vec{v}_k$
is called a *linear combination* of \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_k with *coefficients*
 x_1 , x_2 , ..., x_k .

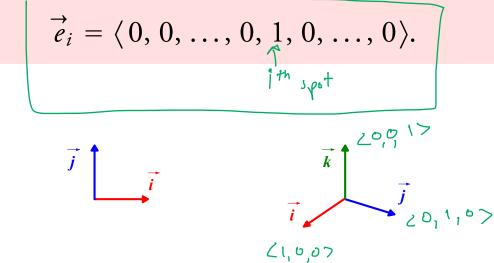
Example: If $\vec{u} = \langle 5, -2, 3, -7 \rangle, \vec{v} = \langle -4, 2, 3, -6 \rangle$ and $\vec{w} = \langle 3, 0, -8, 3 \rangle$, then: $5\vec{u} - 3\vec{v} + 6\vec{w} =$

Example: If $\vec{u} = \langle 5, -2, 4, 6 \rangle$ and $\vec{v} = \langle 1, -5, 2, -3 \rangle$, is it possible to express $\langle 11, 37, -2, 51 \rangle$ as a linear combination of \vec{u} and \vec{v} ?

On board.

The Standard Basis Vectors

Definition: The standard basis vectors in \mathbb{R}^n are the vectors \vec{e}_1 , \vec{e}_2 , ..., \vec{e}_n that have 0 in all components except the i^{th} component, which contains 1 :



The Standard Basis Vectors of \mathbb{R}^2 and \mathbb{R}^3

Theorem: Every vector $\vec{x} = \langle x_1, x_2, ..., x_n \rangle \in \mathbb{R}^n$ can be expressed **uniquely** as a linear combination of the standard basis vectors:

$$\langle x_1, x_2, \ldots, x_n \rangle = x_1 \overrightarrow{e}_1 + x_2 \overrightarrow{e}_2 + \cdots + x_n \overrightarrow{e}_n.$$

$$= \chi_1 \stackrel{\rightarrow}{e}_1 + \chi_2 \stackrel{\rightarrow}{e}_2 + \cdots + \chi_n \stackrel{\rightarrow}{e}_n$$

K

The Proof Template

Write the Theorem you are trying to prove, in its entirety.

Paraphrase the Theorem by identifying the *given conditions* and the *conclusion:*

We are given that:

The conclusion we want to reach is: or

We want to show that:

Write down the relevant Definitions:

The given conditions mean that:

The conclusions we want to reach mean that:

The notations in the Theorem mean:

Write down any relevant *Theorems* that are related to the given conditions or to the conclusion and try to connect everything in your template together in a complete proof.

Use the words and phrases:

let, consider, assume, suppose,

if, if and only if,

thus, therefore, this implies, we can conclude that, but, however,

we know that, our goal is to show that, according to this Theorem, we get a contradiction, let us form the contrapositive, conversely . . . etc.

Practice!