1.2 The Span of a Set of Vectors

Definition: The *Span* of a non-empty set of vectors $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ from \mathbb{R}^n is the set of *all possible linear combinations* of the vectors in the set. We write:

$$
\sum_{k} \left| \begin{array}{c} \text{Span}(S) = \text{Span}\left(\left\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\right\}\right) \\ = \left\{\overrightarrow{x_1v_1} + \overrightarrow{x_2v_2} + \dots + \overrightarrow{x_kv_k} \right\} \\ x_1, x_2, \dots, x_k \in \mathbb{R} \right\} . \end{array} \right|
$$

We note that the individual vectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ are all members of *Span*(*S*), where we let $x_i = 1$ and all the other coefficients 0 in order to produce \vec{v}_i . Similarly, the zero vector $\overrightarrow{0}_n$ is also a member of *Span*(*S*), where we make all the coefficients x_i zero to produce 0_n .

M

Theorem: In any
$$
\mathbb{R}^n
$$
: $Span\left(\left\{\vec{0}_n\right\}\right) = \left\{\vec{0}_n\right\}$.
 $\times \vec{0} = \vec{0}$

Theorem: For all $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k \in \mathbb{R}^n$: $|c+1|$ $Span \left(\begin{array}{c} \langle \hat{v}_n, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \rangle \end{array} \right)$ $= Span(\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\})$.

Theorem: $\mathbb{R}^n = Span(\{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}).$ already proved! $\langle x_1, x_2, ..., x_n \rangle = x_1 \overrightarrow{e_1} + x_2 \overrightarrow{e_2} + ... + x_n \overrightarrow{e_n}$ B/c :

The Span of One Vector in \mathbb{R}^2

Example: Suppose that $\vec{v} = \langle 5, 3 \rangle \in \mathbb{R}^2$.

The Span of One Vector in \mathbb{R}^3

Lines in \mathbb{R}^n

Definition — Axiom for a Line:

If $\vec{v} \in \mathbb{R}^n$ is a *non-zero* vector, then $Span(\{\vec{v}\})$ is geometrically a $\lim_{n \to \infty} L$ in \mathbb{R}^n passing through the origin.

The Span of Two Parallel Vectors

Example: Suppose that $\vec{v} = \langle -15, 10 \rangle$ and $\vec{w} = \langle 12, -8 \rangle \in \mathbb{R}^2$. Describe $Span(\{\vec{u}, \vec{v}\})$.

$$
\begin{array}{c}\n\begin{array}{c}\n\stackrel{3}{\sqrt{1}} & \text{if } \frac{1}{\sqrt{1}} \\
\hline\n\end{array} \\
\begin{array}{c}\n\stackrel{3}{\sqrt{1}} & \text{if } \frac{1}{\sqrt{1}} \\
\hline\n\end{array} \\
\begin{array}{c}\n\stackrel{1}{\sqrt{1}} & \text{if } \frac{1}{\sqrt{1}} \\
\hline\n\end{array} \\
\begin{array}{c}\n\stackrel{1}{\sqrt
$$

Theorem: If \vec{u} and \vec{v} are non-zero vectors in some \mathbb{R}^n which are parallel to each other, then:

$$
Span(\{\vec{u}, \vec{v}\}) = Span(\{\vec{v}\}) = Span(\{\vec{u}\}).
$$
\n
\n• $\lambda_1 \vec{u} + x_2 \vec{v} \in Span(\{\vec{v}\}) = Span(\{\vec{u}\}).$ \n
\n• $\vec{u} || \vec{v} \exists \vec{k} \in \mathbb{R}$ so that $\vec{u} = \vec{k} \vec{v}$ \n
\n $\lambda_1 \vec{u} + x_2 \vec{v} \in \lambda_1 (\vec{k} \vec{v}) + x_2 \vec{v}$ \n
\n $= (x_1 \vec{k} + x_2) \vec{v}$ \n
\n $= x_1 \vec{u} + x_1 \vec{v} \in Span(\{\vec{v}\})$ \n
\nSo $Span(\{\vec{u}, \vec{v}\}) = Sym(\{\vec{u}, \vec{v}\})$ \n
\n $= x_1 \vec{u} + x_2 \vec{v} \in Span(\{\vec{u}, \vec{v}\})$ \n
\n $= x_1 \vec{u} + 0 \vec{v} = x_1 \vec{u} + x_2 \vec{v} \in Span(\{\vec{u}, \vec{v}\})$ \n
\nThis ρP^{max} $Span(\{\vec{u}\}) \in Span(\{\vec{u}, \vec{v}\})$ \n
\n ρP^{max} ρP^{max} ρP^{max} ρP^{max} ρP^{max} ρP^{max}

In general:
$$
\left(5=\frac{2x+y}{13}\right)\left(1=\sqrt{5\left[\frac{2x+y}{13}\right]^{-1}}
$$

Theorem: If $\vec{u}, \vec{v} \in \mathbb{R}^2$ are *non-parallel* vectors, then: $Span(\{\vec{u}, \vec{v}\}) = \mathbb{R}^2$. In other words, *any vector* $\vec{w} \in \mathbb{R}^2$ can be expressed as a linear combination: $\vec{w} = r\vec{u} + s\vec{v}$, for some scalars *r* and *s*. Y if we P^2 then $\vec{w} \in Span(\{\vec{v}, \vec{v}\})$ $\begin{array}{c}\n\rightarrow \\
\text{w} = r\,\text{u} + s\,\text{v}\n\end{array}$

Definition — Axiom for a Plane in Cartesian Space:

If \vec{u} and \vec{v} are vectors in \mathbb{R}^3 that are *not parallel* to each other, then $Span(\{\vec{u}, \vec{v}\})$ is geometrically a *plane* Π in Cartesian space that passes through the origin $(\Pi$ is the capital form of the lowercase Greek letter π).

 $Span(\{\vec{u}, \vec{v}\}) = \Pi$

Example: Span($\{(-2, 1, -3), (5, 4, -3)\}$). plane through the origin.

The Cartesian Equation of a Plane

Definition: The *Cartesian equation* of a plane through the *origin* in Cartesian space, given in the form $\Pi = Span(\{\vec{u}, \vec{v}\})$, where \vec{u} and \vec{v} are not parallel, has the form:

$$
ax + by + cz = 0, \quad \langle a, b, c \rangle \leq \langle x, y \rangle
$$

for some constants, *a*, *b* and *c*, where at least one coefficient is non-zero.

$$
Vedov
$$
 $E\&$ P l
 π $=$ $\left\{ \begin{array}{c} \vec{v} & \vec{v} & \vec{v} \\ \vec{v} & \vec{v} & \vec{v} \end{array} \right\} \quad \text{for all } \vec{v} \in \mathbb{R}^{2}$

Translation of a Span

General Lines in \mathbb{R}^n

Definitions: A *line* L in \mathbb{R}^n is the translate of the Span of a single $\vec{d} \in \mathbb{R}^n:$ *non-zero* vector *d* FQ Live Passing
point P in the

$$
L = \left\{ \vec{x}_p + \vec{td} | t \in \mathbb{R} \right\}, \quad \int_{\text{point}}^{\text{point}}
$$

for some vector $\vec{x}_p \in \mathbb{R}^n$. We may think of \vec{d} as a *direction vector* of *L*, and any non-zero multiple of *d* \overrightarrow{d} can also be used as a direction vector for *L*.

We see that by setting t to zero that \vec{x}_p is a *particular* vector on the line *L*. We will also say that two *distinct* lines are *parallel* to each other if they are different translates of the same line through the origin.

General Lines in \mathbb{R}^3

Example: Consider the line *L* in Cartesian space passing through the point $(-5, 2, -3)$ and pointing in the direction of $\langle 2, 4, -7 \rangle$.

Definition: A line *L* in Cartesian space passing through the point (x_0, y_0, z_0) , and with non-zero direction vector *d* \overrightarrow{d} $=\langle\,a,\,b,\,c \rangle$ can be specified using a *vector equation*, in the form:

$$
\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle
$$
 where $t \in \mathbb{R}$.

 \overrightarrow{d} If *none* of the components of *d* are zero, we can obtain *symmetric equations* for *L*, of the form: je solve for t

$$
\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}.
$$

Assure
a,b,c fo

$$
x = x_{0} + \frac{1}{\alpha} \rightarrow t = \frac{x - x_{0}}{\alpha}
$$

\n $y = y_{0} + \frac{1}{\alpha} \rightarrow t = \frac{y - y_{0}}{\alpha}$
\n $t = \frac{y - y_{0}}{\alpha}$

General Planes in \mathbb{R}^n

Definition: A *plane* Π in \mathbb{R}^n is the translate of a Span of two *non-parallel* vectors \vec{u} and $\vec{v} \in \mathbb{R}^n$:

$$
\Pi_{\rho} = \left\{ \vec{x} = \vec{x}_p + r\vec{u} + s\vec{v} \mid r, s \in \mathbb{R} \right\},\
$$

for some $\vec{x}_p \in \mathbb{R}^n$.

Some creative ways to specify a plane in Cartesian space:

- requiring the plane to contain three non-collinear points.
- requiring the plane to contain two intersecting lines.
- requiring the plane to contain two parallel lines.

Example: Find parametric equations and a Cartesian equation for the plane Π passing through $A(1, -3, 2)$, $B(-1, -2, 1)$ and $C(2, 3, -1)$. $\pi = \frac{2}{3} \times \frac{1}{4} + \frac{3}{5} u + \frac{1}{2} \times \frac{3}{5} + \frac{1}{5}$ \mathcal{A}

Definition: A plane Π in Cartesian space can be specified using a *Cartesian equation*, in the form:

$$
ax + by + cz = d,
$$

for some constants, *a*, *b*, *c* and *d*, where either *a* or *b* or *c* is non-zero. It is not unique, because we can multiply all the coefficients in the equation by the same non-zero constant *k*, and the resulting equation will again be a Cartesian equation for Π . The plane passes through the origin *if and only if* $d = 0$.

The Span of Three Non-Coplanar Vectors

Theorem: If \vec{u} , \vec{v} and \vec{w} are *non-coplanar* vectors in \mathbb{R}^3 , that is, none of these vectors is on the plane determined by the two others, then:

$$
Span(\{\vec{u}, \vec{v}, \vec{w}\}) = \mathbb{R}^3.
$$

In other words, any vector $\vec{z} \in \mathbb{R}^3$ can be expressed as a linear combination, $\vec{z} = r\vec{u} + s\vec{v} + t\vec{w}$, for some scalars *r*, *s* and *t*.

If \vec{u} , \vec{v} and \vec{w} Are *Non-Coplanar* Vectors in \mathbb{R}^3 , Then $Span(\{\vec{u}, \vec{v}, \vec{w}\}) = \mathbb{R}^3$