
1.5 Linear Systems and Linear
Independence

Definition:

A linear system is called consistent if it has at least one solution.

A linear system is called inconsistent if it does not have any
solutions.
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Theorem: Let b� � hm and let S � £v�1, v�2, . . . , v�n ¤ be a set of
vectors from hm. Then b� � Span�S  if and only if the system
of equations corresponding to the augmented matrix:

A � v�1 v�2 . . . v�n | b�

is consistent.

Section 1.5 Linear Systems and Linear Independence 2



Definition: A linear system with m equations in n variables is
called:

1. square if m � n.

2. underdetermined if m � n.

3. overdetermined if m � n.
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Geometric Interpretation in h2 and h3
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Example: Let us investigate the system:

2x � 3y " z � 5
5x � 4y " 3z � 7
"7x � 7y � 6z � 10
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Homogeneous Systems

Definition: A homogeneous system of m equations in n
unknowns is a system of linear equations where the right side of
the equations consists entirely of zeros. In other words, the
augmented matrix has the form:

A | 0 m ,

where A is an m � n matrix. If the right side b� is not the zero
vector, we call the system non-homogeneous.

Clearly, x� � 0 n � 0, 0, . . . , 0 is a solution to the
homogeneous system. We call this the trivial solution to a
homogeneous system, and any other solution is called a
non-trivial solution.
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When do we get an Infinite Number of
Solutions?
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Theorem: A homogeneous system has an infinite number of
solutions (and hence, non-trivial solutions) if and only if the rref
of A has free variables.

What shape of system always has a free variable?
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Theorem: An underdetermined homogeneous system always has
an infinite number of solutions. In other words, a homogeneous
system with more variables than equations has an infinite
number of solutions.

Example:

4 "8 3 9 | 6
3 "6 "4 13 | 17
"2 4 3 "9 | "12

v

1 "2 0 3 | 3

0 0 1 "1 | "2

0 0 0 0 | 0
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Matrix Products

Set-up:

Identify a vector with a column matrix:

x� � �x1, x2, T , xn � �

x1

x2

B

xn

Partition a matrix into columns:

A � c�1 c�2 C c�n ,
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Definition — Matrix Product:

If A � c�1 c�2 C c�n is an m � n matrix and x� � hn, we

define the matrix product Ax� to be the linear combination:

Ax� � c�1 c�2 C c�n

x1
x2
B

xn

� x1c�1 � x2c�2 �C � xnc�n.

Notice that since each column is an m � 1 matrix, the matrix
product is again an m � 1 matrix. Thus, Ax� is a linear
combination of the columns of A with coefficients from x�, and so
Ax� � hm.
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Example:

7 "1 "2 6
"2 5 3 "4

8 3 "5 1

4
"2

3
5

.
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Theorem — Properties of Matrix Multiplication:
For all m � n matrices A, for all x�, y� � hn, and for all k � h,
matrix multiplication enjoys the following properties:

The Additivity Property A�x� � y�  � Ax� � Ay�.

The Homogeneity Property A�kx�  � k�Ax� .
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The Matrix Product Form of Linear
Systems

x1v�1 � x2v�2 �C � xnv�n � b�.

We formed the augmented matrix v�1 v�2 C v�n | b� and looked
at its rref.

Alternative way:

v�1 v�2 C v�n

x1

x2

B

xn

� b�.
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Matrix Equation:

Ax� � b�
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Rephrase Consistency Requirement for
Membership in a Span

Theorem: Suppose that S � £v�1, v�2, . . . , v�n ¤ be a set of vectors
from hm, and b� � hm. Let us form the m � n matrix:

A � v�1 v�2 C v�n .

Then, b� � Span�S  if and only if the matrix equation Ax� � b� is
consistent.
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Major Concept: Linear Dependence and
Independence

Definition: A set of vectors S � £v�1, v�2, . . . , v�n ¤ from hm is
linearly dependent if we can find a non-trivial solution
x� � �x1, x2, . . . , xn � � hn, where at least one component is not
zero, to the vector equation:

x1v�1 � x2v�2 �C � xnv�n � 0 m.

We will call this equation the dependence test equation for S. An
equation of this form where at least one coefficient is not zero
will be referred to as a dependence equation. Thus, for S to be
linearly dependent, we must find a non-trivial solution x� to the
homogeneous system:

Ax� � 0 m,

where A � v�1 | v�2 | . . . | v�n is the matrix with the vectors v�1,
v�2, . . . , v�n as its columns. This is equivalent to the presence of a
free variable in the rref of the matrix A.
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However, if only the trivial solution x� � 0 n exists for the
dependence test equation, we say that S is linearly independent.

We often drop the adjective “linearly” and simply say that a set S
is dependent or independent.
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Example: The standard basis S � £e�1, e�2, T , e�m¤.

Example: Suppose that v�1 � �4,"5, 3,"2�, v�2 � �7,"6, 2,"4�
and v�3 � �"1,"7, 9, 2�.
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Classifying Small Sets of Vectors

Theorem: Any set S � 0 n, v�1, v�2, . . . , v�n � hm containing

0 m is a dependent set.

Theorem: A set S � £v�¤ consisting of a single non-zero vector
v� � hm is independent.

When is S � £u�, v�¤ linearly dependent / independent?
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Theorem: A set S � £u�, v�¤ consisting of two vectors from hm is
dependent if and only if u� and v� are parallel to each other.
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Two Dependent

(Parallel) Vectors

Two Independent

(Non-Parallel) Vectors

Example: £�15,"10, 20,"25�, �"9, 6,"12, 15� ¤

When is S � £u�, v�, w� ¤ linearly dependent / independent?
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Theorem: A set S � £u�, v�, w� ¤ consisting of three non-zero
vectors from hm is dependent if and only if u�, v� and w� are
coplanar.
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Three Dependent

(Non-Parallel) Vectors

where

w� � Span�£u�, v�¤  � $

Three Independent

(Non-Parallel) Vectors

where

w� � Span�£u�, v�¤  � $

Example:

S � £�2,"3, 4�, �5, 3,"6�, �"4,"2, 7� ¤.
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Another Way to Think of Linear
Dependence/Independence

Theorem: Suppose that S � £v�1, v�2, . . . , v�n ¤ is a set of non-zero
vectors from some hm, and S contains at least two vectors. Then:
S is linearly dependent if and only if at least one vector v�i from S
can be expressed as a linear combination of the other vectors in
S.
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Guaranteed Dependence

If the vectors are from hn, what is the minimum number of
vectors required to produce an underdetermined system?

Theorem: A set S � £v�1, v�2, . . . , v�m ¤ of m vectors from hn is
automatically linearly dependent if m � n.

Example:
S � 5,"3, 0,2 , �2,"7, 3,"8�, 1, 0, " 2, 4 ,

�"5, 1, 6,"3�, �"2, 5, 1, 6�¤
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