1.5 Linear Systems and Linear
Independence

Definition:

A linear system is called consistent if it has at least one solution.
"\_/'-/'_
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A linear system is called imcomsistent it it does moz have any

solutions. - @
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Theorem: Let b € R? and 1 Vi, V2, ...,V » be a set of

1S consistent.
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Definition: A linear system with m equations in 7 variables is

called:
1. square if@

2. g&dém’etermined if@ wide |

3. overdetermined if m > n. k
Yhin
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Geometric Interpretation in R* and R>
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Example: Let us investigate the system:

ection 1.5 Linear

Systems and Linear

Independence

2x + 3y — z = 5
S5x + 4y — 3z = T
—Ix + Ty + 6z
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Homogeneous Systems

Definition: A  homogeneous system of m equations in 7
unknowns is a s?ﬁr quations where the right side of
the equations consists entirely\ of zeros. In other words, the
augmented matrix has the form:

. b-0 EARRLESCIE

_)
where A is an m x n matrix. If the right side & is not the zero
vector, we call the system non-homogeneous.

Clearly, }):6)” = <O, 0,..., O> is a solution to the
homogeneous system. We call this the trivial solution to a

homogeneous system, and any other olution is called a

non-trivial solution. v\ 2 e
) O

HSOT Alveys hes oy seliTin (X ).
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When do we get an Infinite Number of

Solutions? ([ oc Y7 ow sl =0



Theorem: A homogeneous system has an infinite number of

solutions (and hence, non-trivial solutions)|if and only if| the rref

of A has free variables.
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What shape of system always has a free variable?
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Theorem: An underdetermined homogeneous system always has
an infinite number of solutions. In other words, a homogeneous
system with more wvariables than equations has an infinite

number of solutions.

Example:

4 8 3 9 6
3 -6 4 13 17
-2 4 3 -9 | -12
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Matrix Products

Set-up:

Identify a vector with a column matrix:

X = (X1,X2y ceuy Xp) =

Partition a matrix into columns:
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Definition — Matrix Product:

i — . . —
IfA=|: C1 €2 *** Cy :|1sanm><nmatrlxandx€[R”,W€

define the matrix product/l?c) to be the linea\;\é:/%mbination:

x1 |\

- o - X2
Cl 6‘2 o e Cﬂ )

Xn

21

— — —
=\x1€01 + X203 + - + X,C)\

Notice that since each column is an m x 1 matrix, the matrix
. . . — . o
product is again an mx 1 matrix. Thus, Ax is a /linear

o o c o -
combination of the columns of A with coefficients from x, and so
Ax € R™,

Jb,’, em ll,\,c,l\‘ of
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Theorem — Properties of Matrix Multiplication:

For all m x n matrices 4, for all X, ¥ € R”, and for all k € R,
matrix multiplication enjoys the following properties:

The Additivity Property AX+Y) = AxX + Ia
The Homogeneity Property A(kX) = k(Ax).

PWC LH\/\D oxpnGise . A
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The Matrix Product Form of Linear
Systems

— — — 7
X1Vl +X2V2 + - + X,V = D.

We formed the augmented matrix I:T}l Vo or Y, | Z:I and looked

at its rref.

Alternative way:
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Matrix Equation:
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Rephrase Consistency Requirement for
Membership in a Span

Theorem: Suppose that S = {V, V2, ..., V, } be a set of vectors
_)
from R™, and b € R™. Let us form the m x n matrix:
=T B o ol

Then, b € Span(S) if and only if the matrix equation Ax = b is
consistent.

17
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Major Concept:mzmd

Independence

o o — — — .
Definition: A set of vectors § = {v1, v, ..., v@} from R?” is

linearly dependent, if we can find a non-trivial solution
- o
w@, where at least one component is not

zero, to the vector equation:

- - - —
A x1v1 +x00+ - +x,v, = 0,,. CHSOE>

We will call this equation the@ependence test eqwztz’on‘Jfor S. An
equation of this form where at least one coefficient is not zero
will be referred to as a dependence equation. Thus, for S to be
linearly dependent, we must find a non-trivial solution x to the

homogeneous system: ool anyse]

(A10) @ e GIR m;“fu

where A = [2/1 | vy | ... | vn] is the matrix with the vectors 7,

Dyy ..., U, as its columns. This is equivalent to the presence of a
free variable in the rref of the matrix A.
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However, if only the trivial solution x = 0, exists for the

dependence test equation, we say that S is| linearly independent.
dependence test equatio

We often drop the adjective “linearly” and simply say that a set §
is dependent or independent.
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Example: The standard basis S = {ey, €2, ..., €n ).
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Example: Suppose that vi = (4,-5,3,-2), v, = (7,-6,2,-4)
and V3 = (-1,-7,9,2). Dolene L0 o LT.
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Theorem: Any set S = {-6_),1, Vi, V2, ..., T}n} c R™ containing
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Theorem: A set S = {V} consisting of a single non-zero vector
. S
v € R™ is independent.

Whenhnearly dependent / independent?
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Theorem: A set S = {u, v} consisting of twe vectors from R™ is
dependent if and only if # and vV areparallel t6 each other.

y
3"/ . 4
— 1 Vv
S | 133 4w 4711234x
Two Dependent Two Independént

(Parallel) Vectors (Non-Parallel) Vectors

Example: {(15,-10, 20,-25), (-9, 6,—12, 15)}
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When is § = {u, v, w } linearly dependent / independent?
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Theorem: A set S ={u,v,w} consisting of three non-zero

vectors from R™ is \dependent if and only if u, Vv and W are

; e ’

Three Dependent Three Independent
(Non-Parallel) Vectors (Non-Parallel) Vectors
where where
w e Span({u,v}) =I1 VV}{ Span({u,v}) = I1

, EX\ @1 ,ry(j x\j\%eﬁg

Example:
S ={(2,-3,4),(5,3,-6),(-4,-2,7) }.
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Another Way to Think of Linear
Dependence/Independence

Theorem: Suppose that S = {Vy, V2, ..., V, } is a set of non-zero
vectors from some R™, and S contains at least two vectors. Then:
S is linearly dependent if and only if at least one vector v; from S
can be expressed as a linear combination of the other vectors in

S.

Section 1.5 Linear Systems and Linear Independence
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Guaranteed Dependence

If the vectors are from R”, what is the minimum number of

vectors required to produce an underdetermined system?

Theorem: A set S = {Vv1,Va, ..., T}m% of m vectors fro

automatically linearly dependent if m > n.
N ) Cp Ceng +ept TV 1non 2 (0 |
/ .

Example:
S = {(5,-3,0,2),(2,-7,3,-8), (1,0, - 2,4),

(=5,1,6,-3), (-2, 5, 1, 6)}

5L > =Y
LD

25

Section 1.5 Linear Systems and Linear Independence



