
1.8 The Fundamental Matrix Spaces

Definitions/Theorem —
The Four Fundamental Matrix Spaces:
Let A be an m � n matrix. The rowspace of A is the Span of the
rows of A. The columnspace of A is the Span of the columns of A.
The nullspace of A is the set of all solutions to Ax� � 0�m:

rowspace�A  � Span�£ r�1, r�2,T , r�m¤ ,
colspace�A  � Span�£c�1, c�2,T , c�n¤ , and

nullspace�A  � x� � hn | Ax� � 0�m ,

where r�1, r�2, T , r�m are the rows of A (considered as vectors from
hn),
and c�1, c�2, T , c�n are the columns of A (considered as vectors
from hm).
Let us define the transpose matrix operation, where AI
(pronounced “A transpose”) is the n � m matrix obtained from A
by writing row 1 of A as column 1 of AI, writing row 2 of A as
column 2 of AI, and so on.
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The fourth fundamental matrix space is:

nullspace�AI  � x� � hm | AIx� � 0�n ,

Under these definitions, the subspaces and the corresponding
ambient spaces are:

rowspace�A  � colspace�AI  � hn,

colspace�A  � rowspace�AI  � hm,
nullspace�A  � hn, and

nullspace�AI  � hm.

The subspace properties for nullspace�A :

zero vector?
closure under addition?
scalar multiplication?
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Theorem — Basis for the Rowspace:
Elementary row operations do not change the rowspace of a
matrix. Thus, if B is obtained from A using an elementary row
operation, then rowspace�A  � rowspace�B .
Consequently, if R is the rref of A, then the non-zero rows of R
form a basis for rowspace�A .
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Theorem — The Minimizing Theorem (Basis for Columnspace
Version):
If an m � n matrix A has reduced row echelon form R, then the
columns of A that correspond to the leading columns of R form a
basis for the columnspace of A.
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Theorem — Basis for Nullspace:
Let A be an m � n matrix with rref R. Then:

nullspace�A  � nullspace�R .
Furthermore, if R has k free variables, then nullspace�A  will be
k-dimensional, and we obtain a basis for nullspace�A  by solving
for the leading variables in terms of the free variables, as usual. A
similar equation applies to AI and its rref.

Warning: We can directly use the entries of the rref of A to find a
basis only for the rowspace and nullspace of A. However, we have
to go back to the original columns of A to describe the
columnspace of A, using the leading 1’s as our guides.
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Example: Suppose we have the matrix:

A �

7 "28 2 17 "3 73 24
"3 12 4 "17 2 "3 "22
"1 4 24 "51 4 131 "62
2 "8 "3 12 4 "43 37

with rref:

R �

1 "4 0 3 0 5 6
0 0 1 "2 0 7 "3
0 0 0 0 1 "8 4
0 0 0 0 0 0 0

.
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AI �

7 "3 "1 2
"28 12 4 "8
2 4 24 "3
17 "17 "51 12
"3 2 4 4
73 "3 131 "43
24 "22 "62 37

with rref:

1 0 2 0
0 1 5 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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Rank and Nullity

Definition/Theorem: Rank and Nullity:
Let A be an m � n matrix. The dimension of the nullspace of A is
called the nullity of A.
The dimension of the rowspace of A is exactly the same as the
dimension of the columnspace of A, and we call this common
dimension the rank of A.
Furthermore, since rowspace�A  � colspace�AI , and
colspace�A  � rowspace�AI , we can conclude that
rank�A  � rank�AI .
We write these dimensions symbolically as:

rank�A  � dim�rowspace�A  
� dim�colspace�A   � rank�AI ,

nullity�A  � dim�nullspace�A  , and

nullity�AI  � dim�nullspace�A  .

8 Section 1.8 The Fundamental Matrix Spaces



Example: For the matrix in our previous Example:

rank�A  �
nullity�A  �
nullity�AI  �
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Theorem/Definition — Bounds on Rank and Nullity:
Suppose A is an m � n matrix. Then:

0 t rank�A  � rank�AI  t min�m,n ,
n " m t nullity�A  t n, and

m " n t nullity�AI  t m.
We say that A has full-rank if rank�A  � min�m,n .
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The Dimension Theorem for Matrices

Theorem — The Dimension Theorem for Matrices:
For any m � n matrix A:

rank�A  � nullity�A  � n, and similarly,

rank�AI  � nullity�AI  � m.
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Sight-Reading the Nullspace

Note how a column of numbers turns into the components of each
basis vector for the nullspace, but appear with the opposite sign.

Where does each component go?
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The General Solution of Ax� � b�

Theorem — The Columnspace Test for Consistency:
The matrix equation Ax� � b� is consistent if and only if
b� � colspace�A .
Furthermore, if Ax� � b� is consistent, suppose x�p is a fixed solution
(also called a particular solution) of this system. Then, a vector x� is
a solution of this system if and only if it can be written in the
form: x� � x�p � x�h, where x�h is a member of the nullspace�A .
Consequently, if x� and y� are any two solutions to Ax� � b�, then
x� " y� � nullspace�A .

Section 1.8 The Fundamental Matrix Spaces 13



Definition: If b� is a fixed vector of hn, and W � hn, then:
b� �W � b� � w� | w� � W is called a translate of the subspace
W.

Theorem: The set X of all solutions x� of a consistent matrix
equation of Ax� � b� is a translate of the nullspace, that is:

X � x�p � nullspace�A ,
where x�p is a fixed or particular solution for Ax� � b�.
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Example:

A |b� �

3 "15 "5 1 3 | 2
"2 10 3 "2 "2 | "3
4 "20 "5 8 3 | 5
2 "10 "4 "2 2 | "2

,

with rref:

R �

1 "5 0 7 0 | 3
0 0 1 4 0 | 5
0 0 0 0 1 | 6
0 0 0 0 0 | 0

.
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Properties of Full-Rank Matrices

Theorem — Linear Systems with a Full-Rank Coefficient Matrix:
Suppose that A |b� is an augment matrix, where A is an m � n
full-rank matrix. Then:

1. If m � n ( the system is underdetermined ), then the system is
consistent for any b� � hm, and furthermore, the system always has
an infinite number of solutions.

2. If m � n ( the system is square ), then the system is consistent
for any b� � hm, and furthermore, the system has exactly one
solution.
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3. If m � n ( the system is overdetermined ), and the system is
consistent, then it has exactly one solution. However, there is at
least one b� � hm for which the system is inconsistent.

Thus, we can also say that an overdetermined full-rank system has
at most one solution.
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Example: Consider:

A1 �
"3 "5 "6 2
2 6 "4 1
4 7 7 "5

,

A2 �
"3 "5 2
2 6 "3
4 7 "5

, and

A3 �

3 5 "2
"2 0 4
1 "3 "3
5 6 "5

.
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Study the systems:

A1x� �
"1
"4
5

,

A2y� �
"1
"4
5

, and

A3z� �

"1
4
2
"3

.
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"3 "5 "6 2 | "1
2 6 "4 "3 | "4
4 7 7 "5 | 5

with rref

R1 �
1 0 7 0 4
0 1 "3 0 "3
0 0 0 1 "2

.
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"3 "5 2 | "1
2 6 "3 | "4
4 7 "5 | 5

with rref

R2 �
1 0 0 | 4
0 1 0 | "3
0 0 1 | "2

.
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3 5 "2 | "1
"2 0 4 | 4
1 "3 "3 | 2
5 6 "5 | "3

with rref

R3 �

1 0 0 | 8
0 1 0 | "3
0 0 1 | 5
0 0 0 | 0

.
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3 5 "2 | "1

"2 0 4 | 5

1 "3 "3 | 2
5 6 "5 | "3

with rref

R4 �

1 0 0 | 0
0 1 0 | 0
0 0 1 | 0
0 0 0 | 1

.
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