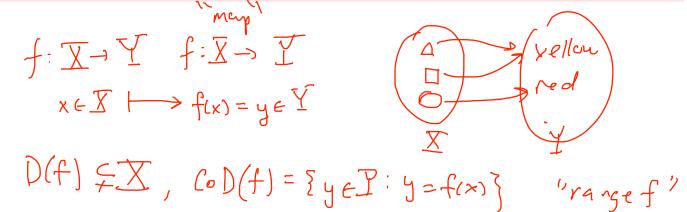
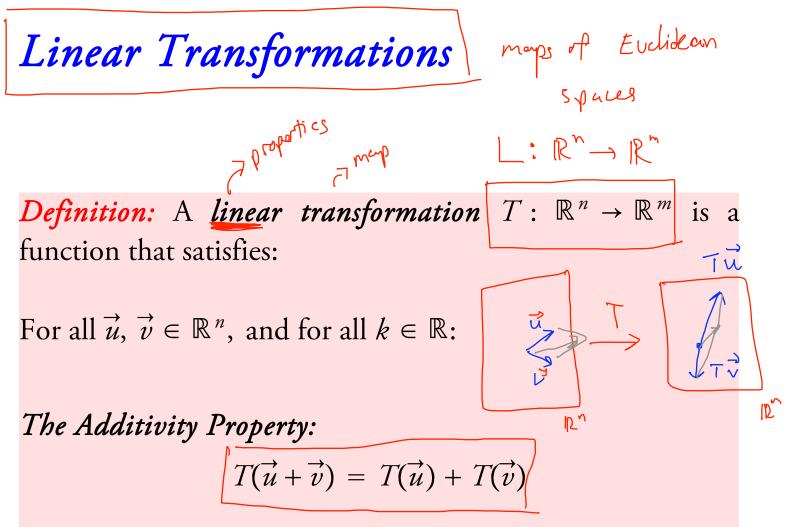
2.1 Mapping Spaces: Introduction to Linear Transformations function blu Eucliden Spaces! f. Rⁿ, R^m

Definition: Let X and Y be any two sets. A *function* $f: X \rightarrow Y$ is a rule (or a recipe, or a formula) that receives as its input an element x of X, and assigns to x as its output a *unique* element y of Y.

We write y = f(x), as usual, and also call y the *image* of x under f.

We call *X* the *domain* of *f*, and call *Y* the *codomain* of *f*. We can also call *f* a *map* (because it tells us where to go), and say that *f maps X into Y*.



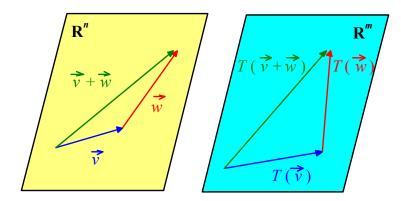


The Homogeneity Property:

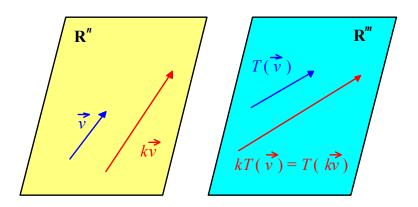
$$T(k \cdot \vec{u}) = \underline{k} \cdot T(\vec{u})$$

In the special case when $T : \mathbb{R}^n \to \mathbb{R}^n$, that is, the domain is the same space as the codomain, we call T a *linear operator*.

perater: T: IR" -> IR" Linear



The Additivity Property



The Homogeneity Property

Stesults in 2A.

Theorem: A function $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation *if and only if* we can find an $m \times n$ matrix A so that the action of T can be performed by matrix multiplication:

$$T(\vec{x}) = A\vec{x}$$

where we view $\vec{x} \in \mathbb{R}^n$ as an $n \times 1$ matrix. We refer to A as the *standard matrix* of T, and we write:

$$[T] = A = \left[T(\vec{e}_1) \mid T(\vec{e}_2) \mid \dots \mid T(\vec{e}_n) \right].$$

In particular, if $T : \mathbb{R}^n \to \mathbb{R}^n$ is an *operator*, [T] is an $n \times n$ or *square* matrix.

Some Basic Examples

Example: The zero transformation of \mathbb{R}^n into \mathbb{R}^m :

$Z_{n,m} : \mathbb{R}^n \to$	\mathbb{R}^m , given by
$Z_{n,m}(\vec{x}) = \vec{0}_m$	for all $\vec{x} \in \mathbb{R}^n$,

$$[Z_{n,m}] = 0_{m \times n} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

For all $\vec{x} \in \mathbb{R}^n$:

$$0_{m\times n}\vec{x}=\vec{0}_m.$$

Example: The Identity Operator on \mathbb{R}^{n} : $I_{\mathbb{R}^{n}} : \mathbb{R}^{n} \to \mathbb{R}^{n}$ defined by

 $I_n(\vec{x}) = I_{\mathbb{R}^n}(\vec{x}) = \vec{x} \quad \text{for all } x \in \mathbb{R}^n$

The Identity matrix I_n :

$$[I_{\mathbb{R}^n}] = I_n = \begin{bmatrix} \vec{e}_1 \ \vec{e}_2 \ \cdots \ \vec{e}_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} Y \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

 $T_{3}(\vec{x}) = \vec{x}$

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$I_n \vec{x} = \vec{x}.$$

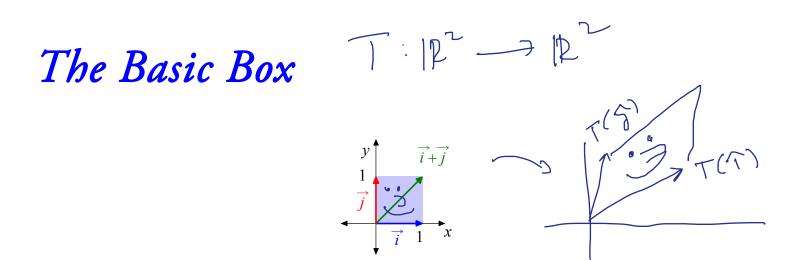
Example: The Scaling Operators: For any $k \in \mathbb{R}$:

 $S_k : \mathbb{R}^n \to \mathbb{R}^n,$ $S_k(\vec{x}) = k\vec{x} \qquad \text{for all } \vec{x} \in \mathbb{R}^n$ 12-2 · - - | - - -[SK] = matrix presentation of Sk. $S_{1}T_{x}^{2} = kx$ $\left[S_{k}\right] = k \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = k I_{n}$

Elementary Matrices

Definition: An $n \times n$ matrix E is called an *elementary matrix* if it is obtained by performing a *single* elementary row operation on the identity matrix I_n .

	EROS	5 200 016 00-	3] elementary matrix	? NO ZEROSI
	Туре:		Notation:		
	1. Multiply row <i>i</i> by $c \neq 0$		$R_i \rightarrow cR_i$		
	2. Exchange row <i>i</i> and row <i>j</i>			$R_i \leftrightarrow R_j$	
	3. Add c ti	mes row <i>j</i> to row	i	$R_i \rightarrow R_i + cR_j$	
	8 2 0 1	$\begin{bmatrix} 0 & 0 \\ 0 & 1 & 6 \\ 1 & 0 & 0 \end{bmatrix}$			
Type I:		Type II:	-	Type <u>111</u>	
322-	PR2	$R_1 \leftarrow 2 R_3$		62-3 RI - 7 RZ	



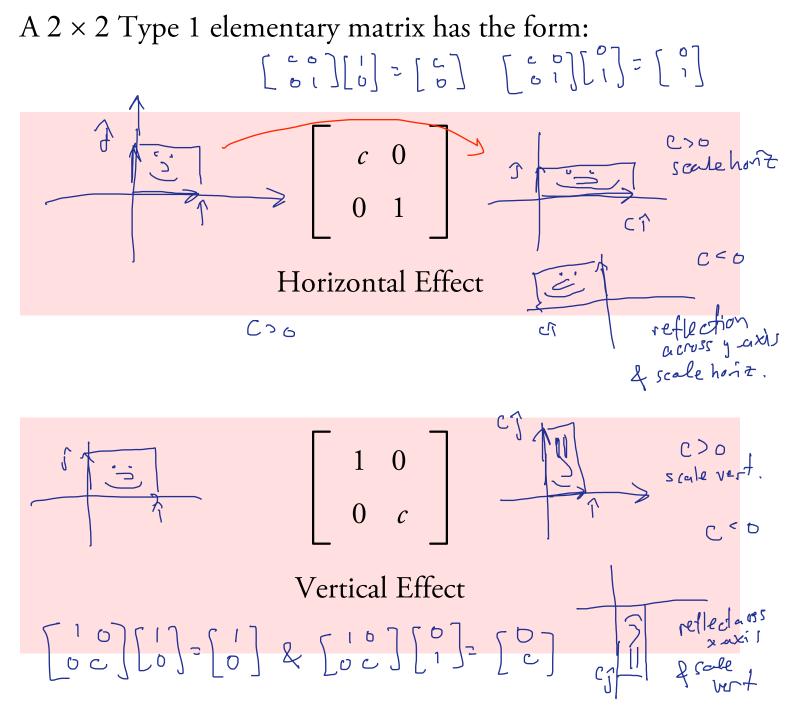
The Basic Box

Made of the 3 vectors:

$$\left\{\vec{i}, \vec{j}, \vec{i} + \vec{j}\right\}$$

Horizontal and Vertical

Dilations and Contractions



Shear Operators

A 2×2 Type 3 elementary matrix has the form: $\begin{bmatrix} \cdot & \cdot \\ & \cdot \end{bmatrix} \begin{bmatrix} \cdot \\ & 0 \end{bmatrix} = \begin{bmatrix} \cdot \\ & 0 \end{bmatrix} \begin{bmatrix} \cdot \\ & 0 \end{bmatrix} = \begin{bmatrix} \cdot \\ & 0 \end{bmatrix} = \begin{bmatrix} \cdot \\ & 0 \end{bmatrix}$ 20 $\begin{array}{c|c} 1 & c \\ 0 & 1 \end{array}$ A Horizontal Shearing Operator (,< d $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (U 0 A Vertical Shearing Operator