2.3 Operations on Linear Transformations and Matrices

Definitions: If
$$
T_1 : \mathbb{R}^n \to \mathbb{R}^m
$$
 and $T_2 : \mathbb{R}^n \to \mathbb{R}^m$ are linear
transformations, and $k \in \mathbb{R}$, then we can define:

$$
S_{U_{\text{max}} \circ f} T_1 \& T_2 : \mathbb{R}^n \to \mathbb{R}^m
$$

$$
T_1 - T_2 : \mathbb{R}^n \to \mathbb{R}^m
$$
 and

$$
S_{\text{enlex}} \uparrow_{\text{reduct}} f_0
$$

$$
kT_1 : \mathbb{R}^n \to \mathbb{R}^m
$$
 and
is linear transformations, with actions given, respectively, by:

$$
\underbrace{\text{d}L\uparrow_{\text{inc}}}_{(T_1 + T_2)(\vec{v})} \underbrace{(T_1 + T_2)(\vec{v}) = T_1(\vec{v}) + T_2(\vec{v})}
$$

$$
(T_1 - T_2)(\vec{v}) = T_1(\vec{v}) - T_2(\vec{v})
$$
, and

$$
\underbrace{\text{d}L\uparrow_{\text{inc}}}_{(kT_1)(\vec{v})} \underbrace{(kT_1)(\vec{v}) = kT_1(\vec{v})}
$$
.

Arithmetic of Matrices

 \int_{0}^{π} st \mathcal{H} *Definitions:* If *A* and *B* are both *m n* matrices, and *k* is any scalar, then we can define: $A + B$, $A - B$, and kA as $m \times n$ matrices with entries given by: $(A + B)_{i,j} = (A)_{i,j} + (B)_{i,j}$ Note: Matrix Add/Sub need them to be SAME $(A - B)_{i,j} = (A)_{i,j} - (B)_{i,j}$, and $(kA)_{i,j} = k(A)_{i,j}.$

We call these the sum and difference of *A* and *B*, and the scalar multiple of *A* by *k*.

In particular, we can define the *negative* of a matrix, $\overline{-A}$, to be:

$$
-A = (-1)A \qquad = (-a_{ij})_{n \times n}
$$

with the property that:

$$
A+(-A)=(-A)+A=0_{m\times n}
$$

$$
A + (-A) = [0]_{h \times n}
$$

Connection Between Linear Transformations and Matrices

Theorem: If $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ and $T_2 : \mathbb{R}^n \to \mathbb{R}^m$ are linear transformations, with matrices $[T_1]$ and $[T_2]$ respectively, and *k* is any scalar, then for any $\vec{v} \in \mathbb{R}^n$:

$$
(T_1 + T_2)(\vec{v}) = ([T_1] + [T_2])\vec{v}
$$

\n
$$
(T_1 - T_2)(\vec{v}) = ([T_1] - [T_2])\vec{v}
$$

\n
$$
(kT_1)(\vec{v}) = (k[T_1])\vec{v}
$$

Consequently, $T_1 + T_2$, $T_1 - T_2$ and kT_1 are linear transformations with matrices given by, respectively:

$$
T_1 + T_2 = [T_1] + [T_2],
$$

\n
$$
[T_1 - T_2] = [T_1] - [T_2],
$$
 and
\n
$$
[kT_1] = k[T_1]
$$

Compositions of Linear Transformations

Definition/Theorem: If $T_1 : \mathbb{R}^n \to \mathbb{R}^k$ and $T_2 : \mathbb{R}^k \to \mathbb{R}^m$ are linear transformations, then we can define their *composition*:

$$
T_2 \circ T_1 : \mathbb{R}^n \to \mathbb{R}^m
$$

as a linear transformation, with action given as follows:

Suppose $\vec{u} \in \mathbb{R}^n$, $T_1(\vec{u}) = \vec{v} \in \mathbb{R}^k$, and $T_2(\vec{v}) = \vec{w} \in \mathbb{R}^m$. Then:

 $(T_2 \circ T_1)(\vec{u}) = T_2(T_1(\vec{u})) = T_2(\vec{v}) = \vec{w}.$

$$
\mathbb{R}^n \stackrel{T_1}{\rightarrow} \mathbb{R}^k \stackrel{T_2}{\rightarrow} \mathbb{R}^m
$$

$$
\sum_{T_2 \circ T_1}^{T_2 \circ T_1} \nearrow
$$

General Matrix Products

Definition — Matrix Product:

If *A* is an $m \times k$ matrix, and *B* is a $k \times n$, then we can construct the $m \times n$ matrix *AB*, where:

column *i* of $AB = A \times$ (column *i* of *B*)

In other words, if we write *B* in terms of its columns as:

$$
B = \begin{bmatrix} \vec{c}_1 & \vec{c}_2 & \cdots & \vec{c}_n \end{bmatrix}
$$

then:

$$
AB = \left[\overrightarrow{Ac_1} \mid \overrightarrow{Ac_2} \mid \cdots \mid \overrightarrow{Ac_n}\right]
$$

NOTE: see the extra notes for an alternative way to think about matrix multiplication.

NOTE: entry in i-th row, j-th column is: (row i of A) o (column j of B) [yes, this is a dot product!)

Linear Combinations of Linear Transformations and Matrices

Definition of a linear combination of linear transformations T 1, T 2, \ldots , T_k .

$$
(c_1T_1 + c_2T_2 + \cdots + c_kT_k)(\vec{v})
$$

= c_1T_1(\vec{v}) + c_2T_2(\vec{v}) + \cdots + c_kT_k(\vec{v})

Note: for this to make sense, need all of them to be from same input same to same output space. Namely, T i : R^n --> R^m for all i=1,...,k

$c_1A_1 + c_2A_2 + \cdots + c_kA_k$.

Of course, by the Equivalence of LT and Mat Thm, anything we can do for LTs we can do for Mat.

$$
[c_1T_1 + c_2T_2 + \dots + c_kT_k]
$$

= $c_1[T_1] + c_2[T_2] + \dots + c_k[T_k]$

Not surprisingly, matrix of the LC of LTs equals the LC of Mats