
2.4 Properties of Operations on
Linear Transformations and Matrices

Goal: Show that matrix operations enjoy many (but not all!!!) of
the properties of the analogous operations on ordinary real
numbers.
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(but not all!!!)



Properties of Matrix Addition and Scalar Multiplication

Theorem: If A, B and C are m � n matrices, and r and s are scalars,
then the following properties hold:

1. The Commutative Property of Addition:
A � B � B � A

2. The Associative Property of Addition:
A � �B � C  � �A � B  � C

3. The “Left” Distributive Property:
�r � s A � rA � sA

4. The “Right” Distributive Property:
r�A � B  � rA � rB

5. The Associative Property of Scalar Multiplication:
r�sA  � �rs A � s�rA 
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ABBA

A, B and C are m n matrices,

Note: all must be SAME SIZE!

ABC ABC

rsA rAsA

rAB rArB

rsA rsA srA



Properties of Matrix Multiplication

Theorem: If A and B are m � k matrices, C and D are k � n
matrices, and r is a scalar, then the following properties hold:

1. The “Left” Distributive Property:

�A � B C � AC � BC

2. The “Right” Distributive Property:

A�C � D  � AC � AD

3. The Associative Property of Mixed (Scalar and Matrix)
Products:

r�BC  � �rB C � B�rC 
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ABC ACBC

ACD ACAD

rBC rBC BrC



The Associative Property of Matrix Multiplication

Theorem: If A is an m � p matrix, B is a p � q matrix, and C is a
q � n matrix, then A�BC  � �AB C.

Proof:

Both products A�BC  and �AB C are m � n matrices.

Now, we have to show that both sides, pair-wise, have exactly the
same entries.

Case 1: C � x�, a q � 1 matrix.

B � b�1 b�2 T b�q

AB � Ab�1 Ab�2 T Ab�q

4 Section 2.4 Properties of Operations on Linear Transformations and Matrices

ABC ABC.

Write B as cols

Matrix Mult in form: A*(col of B) are the cols of A*B

Case 1: C x, a q 1 matrix.



�AB x� � Ab�1 Ab�2 T Ab�q

x1
x2
B

xq

� x1 Ab�1 � x2 Ab�2 �C � xq Ab�q

Now, let us work on A�Bx� :

Bx� � b�1 b�2 T b�q

x1
x2
B

xq

� x1b�1 � x2b�2 �C � xqb�q
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Recall: "Right Dist Prop"



A�Bx�  � A x1b�1 � x2b�2 �C � xqb�q

� A x1b�1 � A x2b�2 �C � A xqb�q

�by the “Right” Distributive Property)

� x1 Ab�1 � x2 Ab�2 �C � xq Ab�q

Case 2: C is an arbitrary q � n matrix:

C � c�1 c�2 ... c�n

�AB c�i � A�Bc�i 

for every column c�i.

Thus, column i of �AB C is exactly the same as that of A�BC ,
and therefore �AB C � A�BC .
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This is same as (A*B)x!

Case 2: C is an arbitrary q n matrix:

By case 1: we know



The Matrix of a Composition

Theorem: If T1 : hn v hk and T2 : hk v hm are linear
transformations, then:

¡T2 ( T1 ¢ � ¡T2 ¢¡T1 ¢
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*

T2 T1 T2T1

Important Result!



k-fold Compositions

If T1,T2, . . . . ,Tk"1,Tk are all linear transformations with the
property that the codomain of Ti is the domain of Ti�1, for all
i � 1. .k " 1, then we can inductively construct the k "fold
composition of these linear transformations by:

�Tk ( Tk"1 (C ( T2 ( T1 �v� 
� Tk��Tk"1 (C ( T2 ( T1 �v�  

¡Tk ( Tk"1 (C ( T2 ( T1 ¢ � ¡Tk ¢¡Tk"1 ¢C¡T2 ¢¡T1 ¢
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Powers of Square Matrices and Linear Operators

Theorem: The matrix product AA can be formed if and only if A
is an n � n matrix. Analogously, the composition T ( T can be
formed if and only if T : hn v hn, i.e., T is an operator.

Write AA as A2 and T ( T as T 2.

Similarly, by induction, we will write:

Ak � A � Ak"1 � A � A � C � A, and

T k�v�  � T�T k"1�v�   � T�T�. . .T�v�   
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AAasA2 andTTasT2.

if and only if

if and only if



Evaluating a Polynomial with a Matrix:

Definition: If p�x  � c0 � c1x � c2x2 �C � ckxk is a polynomial
with real coefficients, and A is any n � n matrix, then we define the
polynomial evaluation, p�A , by:

p�A  � c0In � c1A � c2A2 �C � ckAk.
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Multiplication by In and 0m�n

Theorem: If A is any m � n matrix, then:

AIn � A and ImA � A;

A0n�p � 0m�p and 0q�mA � 0q�n.
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AIn A

ImA A;

Important: properties of Identity matrices!

Important: properties of Zero matrices!



Danger Zone!

The Existence of Zero Divisors:

Definition: Two n � n matrices A and B with the property that
AB � 0n�n, but neither A nor B is 0n�n are called zero divisors.

In other words, The Zero Factors Theorem does not hold for
matrices.

AB p BA Most of the Time!

Matrix multiplication, in general, is NOT commutative!
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Matrix Multiplication shares many of the properties of real numbers R. BUT NOT ALL!

AB BA Most of the Time!

NOT commutative!

Remember: Matrix multiplication doesn't have all the properties of regular multiplication in R.

Matrix Mult: fails Zero-Factors Theorem! Since we can find matries A*B=[0] but A is not [0] and B is not [0]!

Matrix Mult: IS NOT COMMUTATIVE! Since A*B = B*A is almost never true. Moreover, A*B is not even always defined!



A Linear Transformation is Uniquely Determined by any Basis

Theorem: If T : hn v hm is a linear transformation, and
B � £v�1,v�2, . . . ,v�n¤ is any basis for hn, then the action of T is
uniquely determined by the vectors £T�v�1 ,T�v�2 , . . . ,T�v�n ¤
from hm.

More specifically, if v� � hn and v� is expressed (uniquely) as
v� � c1v�1 � c2v�2 �C � cnv�n, then:

T�v�  � c1T�v�1  � c2T�v�2  �C � cnT�v�n .
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A Linear Transformation is Uniquely Determined by any Basis

B v1,v2,...,vn

Tv1 , Tv2 , . . . , Tvn

Tv c1Tv1 c2Tv2 cnTvn .

Idea:

Don't take this literally right now. We will come back to this topic later. The idea is that we want to find the "best basis" that matches the properties of a LT T. This can mean several things. For example, we want to find a basis B that makes [T] the "simples". Again, we'll revist this idea at a later time.


